Chinese Journal of Agrometeorology ›› 2018, Vol. 39 ›› Issue (12): 796-804.doi: 10.3969/j.issn.1000-6362.2018.12.004

Previous Articles     Next Articles

Effect of Source Size on Rice Pollen Diffusion under Field Experiments

ZHANG Jie, WANG Yong-qun, HU Ning, JIANG Xiao-dong, LIU Zi-he, PEI Xin-wu   

  1. 1.College of Agricultural Science and Engineering, Hehai University, Nanjing 210098, China; 2.Atmospheric Environment Center/ Jiangsu Key Laboratory of Agriculture Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044;3. Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Online:2018-12-20 Published:2018-12-11

Abstract: Pollen-mediated gene flow from rice is one of the main ways of transgenic escape. Therefore, it is great significance to master the rule of pollen diffusion for the study of gene flow. In this study, three treatments with different source size of 5m×5m(TR1), 10m×10m(TR2) and 15m×15m(TR3) were designed. Rice panicles per unit area, flowering spikelets per panicle, pollen grains for each spikelet and pollen depositions along the main wind direction were observed to calculate pollen source strength per unit area and effective source strength ratio. The effect of source size on pollen source strength, pollen deposition, effective source strength ratio and pollen diffusion distance was studied. The results showed that: (1) source size did not affect the pollen source strength per unit area, while it could only change the total source strength. The proportion of total source strength between TR1, TR2 and TR3 was 1:4:9. (2) Source size did not change the characteristic of pollen deposition along the main wind direction. The pollen deposition first had a rapid increase and then declined after the peaks within the source area. In the downwind, pollen deposition could be expressed as the negative exponential function of distance. (3) The pollen source size was larger, the pollen deposition at different distances was greater, and the pollen diffusion distance was increased accordingly. However, this effect would levelled off with a larger pollen source size. (4) 27.9%?33.4% of the effective source strength ratio for three treatments meant that only about 30 percent pollen could escape and dropped down out of the source area, which might lead to gene flow. But, the effective source strength ratio would gradually decrease, when the pollen source size was increasing. (5) There were similar effects of wind on pollen diffusion between different treatments. The effective source strength ratio was larger and the pollen diffusion distance was farther at higher wind speed. Wind direction mainly affects the effective source strength ratio. It should be noted that the wind had a more significant influence on the larger pollen source.

Key words: Rice, Pollen source size, Pollen source strength, Pollen deposition, Effective source strength ratio