In order to study the effects of water stress on the growth, membrane lipid peroxidation and osmotic adjustment of broom corn millet seedlings, the experiment was conducted 5 treatments: severe drought, slight drought, normal irrigation control, slight flooding and severe flooding. ‘Jinshu No. 8’ millet as material was grown in sand culture and irrigated with nutrient solution, and indicators including the morphological indicators, biomass, water content of plant, and the membrane permeability, the contents of photosynthetic pigments, MDA, AsA, proline, soluble sugar and soluble protein in leaves were determined on 20th day after treatment. The results showed that the millet seedling grew best under normal irrigation condition, with the largest values of plant height, stem diameter, nodule number, leaf number, maximum leaf area, fresh mass and dry mass of root, stem and leaf, and panicle. All morphological indicators and biomasses were obviously decreased under drought and flooding treatments, and the extent of decrease under severe drought and severe flooding were more obvious than those under slight drought and slight flooding. The water contents of root, stem and leaf, panicle were clearly decreased under drought, but showed different tendency under flooding treatments. The contents of photosynthetic pigments were significantly decreased under drought, while relatively stable under flooding. The membrane permeability, the contents of MDA, AsA and proline were obviously increased under drought and flooding, and the extents of increase under severe drought and severe flooding were more obvious than those under slight drought and slight flooding. The soluble sugar content was clearly increased under drought and was clearly decreased under flooding, the soluble protein content was significantly reduced under drought and was relatively stable under flooding. The research illustrated that the drought and flooding caused the peroxidation injury to the millet seedlings, and the contents of antioxidants and osmotic adjusting materials were increased. But the increase of antioxidants could not completely eliminate the peroxidation injury caused by stress. In addition, the photosynthetic ability was decreased under stress, which caused the inhibition of the growth of millet seedlings. Under the experimental condition, drought stress caused more serious damage to millet seedlings than flooding.