中国农业气象 ›› 2025, Vol. 46 ›› Issue (10): 1438-1448.doi: 10.3969/j.issn.1000-6362.2025.10.006

• 农业生物气象栏目 • 上一篇    下一篇

基于MaxEnt优化模型预估中国悬钩子属植物的潜在分布

陈翠萍,滕艳飞,周朝彬,王文华,余红梅,潘浪   

  1. 1.遵义师范学院,遵义 563006;2.重庆市开州区农业发展服务中心,重庆 405400;3.奉节县农业技术服务中心,重庆 404699;4.遵义市林业局,遵义 563000
  • 收稿日期:2024-12-13 出版日期:2025-10-20 发布日期:2025-10-16
  • 作者简介:陈翠萍,E-mail:1505444930@qq.com
  • 基金资助:
    贵州省科学技术厅支撑计划项目(黔科合支撑[2018]2281);贵州省中药材现代产业技术体系建设遵义综合试验站项目(ZCYTX2019−0205);赤水河流域环境保护与山地农业发展人才基地项目(黔人领发[2016] 22号)

Potential Distribution Prediction of Rubus in China Based on Optimized MaxEnt Model

CHEN Cui-ping, TENG Yan-fei, ZHOU Chao-bin, WANG Wen-hua, YU Hong-mei, PAN Lang   

  1. 1. Zunyi Normal College, Zunyi 563006, China; 2. Kaizhou Agricultural Development Service Center, Chongqing 405400; 3. Fengjie Agricultural Development Service Center, Chongqing 404699; 4. Zunyi Forestry Bureau, Zunyi 563000
  • Received:2024-12-13 Online:2025-10-20 Published:2025-10-16

摘要:

基于中国药食同源悬钩子属植物的实际分布样点以及28个环境变量,利用R语言ENMeval程序包优化MaxEnt模型,确定关键环境影响因子,预估当前(1970−2000年)和未来时期(2021−2040年、2061−2080年)中国悬钩子属植物的潜在适生分布。结果表明:ENMeval程序包优化后,MaxEnt模型的Akaike信息标准系数为0,表明模型模拟性能好。海拔、等温性、0−30cm表层黏性土壤阳离子交换能力、最湿季平均温度和最冷月最低温5个环境变量显著影响悬钩子属植物潜在适生分布。悬钩子属植物在当前(1970− 2000年)气候条件下高适生区面积为192.72×104km2,主要集中在陕西、贵州、福建等地。2021−2040年和2061−2080年4种温室气体排放情景SSP126、SSP245、SSP370和SSP585)下,悬钩子属植物潜在适生区总面积和高适生区面积比当前时期分别减少52.11%~66.36%、49.99%~71.61%,减少的地区主要分布在西北地区、华北地区、东北地区以及西南地区的西藏自治区和云南。综上,未来气候变化条件下悬钩子属植物适生区面积可能显著减少。对于悬钩子属植物面积减少地区,可采取迁地保护措施,保护该属植物资源。

关键词: 悬钩子属植物, ENMeval, MaxEnt模型, 适生区, 气候变化

Abstract:

The genus Rubus included medicinal and edible plants with great economic development potential. Study on climate, topography and soil variables effects for the suitable distribution of these species could provide a valuable reference for resource protection, introduction and utilisation. Using effective distribution data of Rubus and 28 climate, topography and soil environmental variables, the potential suitable distribution of Rubus in China was predicted using the optimized MaxEnt model based on the ENMeval package in R under the current (1970−2000) and future (2021−2040 and 2061−2080) climate conditions. The results showed that after optimization by the ENMeval package, the model’s Akaike information criterion (ΔAICc) was 0, indicating good predictive performance. Elevation, isothermality, the cation exchange capacity of the clay fraction in topsoil (0−30cm), the mean temperature of the wettest quarter and the minimum temperature of the coldest month were the important environmental variables that significantly affected the suitable distribution of Rubus. The highly suitable area for Rubus under the current (1970−2000) climate conditions was 192.72×104km2, mainly concentrated in Shaanxi, Guizhou and Fujian. Under the future (2021−2040 and 2061−2080) climate conditions and four greenhouse gas concentration pathways (SSP126, SSP245, SSP370 and SSP585), both the total and highly suitable areas for Rubus were significantly reduced to 52.11%−66.36%, 49.99%−71.61% compared with the current climate conditions, respectively. The reduction mainly occurring in the northwest, north, northeast, the Xizang autonomous region and Yunnan in southwest China. The prediction shows that the suitable area of Rubus will significantly decrease with future climate change. Ex situ conservation measures could be adopted in the predicted reduction areas of Rubus to protect these species.

Key words: Rubus, ENMeval, MaxEnt model, Suitable area, Climate change