中国农业气象 ›› 2024, Vol. 45 ›› Issue (7): 766-776.doi: 10.3969/j.issn.1000-6362.2024.07.007

• 农业生物气象栏目 • 上一篇    下一篇

1980−2020年极端气候变化对京津冀玉米产量的影响

刘兵,杨洋,郝卓   

  1. 1.河北建筑工程学院市政与环境工程系,张家口 075000;2.中国农业科学院农业环境与可持续发展研究所,北京 100081
  • 收稿日期:2023-09-08 出版日期:2024-07-20 发布日期:2024-07-18
  • 作者简介:刘兵,E-mail:liu11111b000@163.com
  • 基金资助:
    科技基础资源调查专项项目(2021FY100501);河北省高等学校科学技术研究项目(BJK2022016)

Impact of Extreme Climate Change on Maize Yield in Beijing-Tianjin-Hebei Region from 1980 to 2020

LIU Bing, YANG Yang, HAO Zhuo   

  1. 1.Department of Municipal and Environmental Engineering, Hebei University of Architecture, Zhangjiakou 075000, China; 2. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2023-09-08 Online:2024-07-20 Published:2024-07-18

摘要:

基于19802020年京津冀地区25个国家级气象台站气象数据与8个典型站点玉米单产数据,通过线性回归、反距离权重插值、M-K检验、Pearson相关性等方法,分析了19802020年逐日平均气温、最高气温、最低气温、生长度日等变化对京津冀地区玉米产量的影响。结果表明:11980-2020京津冀地区生长度日(GDD)、高温指数[极端最高气温(TXx)、高温日数(Htd)]呈显著上升趋势,上升速率分别为58.31 ℃·d·10a−1、0.39℃·10a10.96d·10a1;低温指数[极端最低气温(TNn)、低温日数(Ltd)]显著下降,下降速率分别为0.28℃·10a12.8d·10a1突变分析结果显示,高温指数比低温指数突变更为剧烈,1980−2020年京津冀地区增温趋势明显。2)极端气温指数存在空间差异性,高温指数高值区主要集中在经济发达城市(北京、天津),低温指数高值区集中在北部(张北)、西南部(邢台)等地。3玉米实际单产呈波动上升趋势,玉米气候产量波动变幅大(−1179831kg·hm2)。19902020年京津冀地区气候丰年有3个(2004年、2005年、2006年)、气候歉年有2个(1999年和2000年)。相关性分析表明GDDTXxHtd为京津冀地区玉米产量变化的主要响应指数结合多项式拟合曲线可知,当TXx≥36℃Htd≥4d时,玉米气候产量呈下降态势

关键词: 极端气温, 京津冀地区, 玉米产量, 相关性

Abstract:

 Extreme climate change, which can cause agricultural problems, has become a global hot topic. In recent decades, the Beijing-Tianjin-Hebei region has experienced several extreme climate events that have had a significant impact on grain yields. This study evaluted the impact of climate change on grain yields in the Beijing-Tianjin-Hebei region from 1980 to 2020 using meteorological data and maize yield per unit area data at eight sites and selected 25 national meteorological stations. Four types of statistical methods were selected, including linear regression, inverse distance weighting interpolation, M-K test, and Pearson correlation, to analyze the characteristics of climate change (maximum, minimum and average temperature, and growing degree days) and its impacts on maize yields. The results revealed: (1) the growing degree days (GDD) and temperature indices such as extreme maximum temperature (TXx) and high temperature days (Htd) exhibited an upward trend over time, with increase rates of 58.31℃·d·10y−1, 0.39℃·10y−1 and 0.96d·10y−1, respectively. However, the low temperature indices (extreme minimum temperature, low temperature days) tended to decrease with decrease rates of 0.28℃·10y−1 and 2.8d·10y−1, respectively. Mutation analysis indicated a higher mutation rate for high temperature indices compared to low temperature indices, indicating a clear warming trend in the Beijing-Tianjin-Hebei region from 1980 to 2020. (2) The spatial distribution of extreme temperature index terms was different. High value of high temperature indices were primarily concentrated in economically developed cities such as Beijing and Tianjin, while low temperature indices were mainly concentrated in the northern (Zhangbei) and southwestern (Xingtai) areas. (3) The grain yield presented a fluctuate increase, with climate yield of maize fluctuating greatly (−1179 to 831kg·ha1). There were three climatic bumper years (2004, 2005 and 2006) and two lean years (1999, 2000) from 1990 to 2020 in the study area. Correlation analysis indicated that GDDTXxHtd were the primary response indices for grain yields in the Beijing-Tianjin-Hebei region, it can be seen that when TXx≥36℃, Htd≥4d, the climatic yield of maize decreases gradually. 

Key words: Extreme temperature, Beijing-Tianjin-Hebei region, Maize yield, Correlation