中国农业气象 ›› 2025, Vol. 46 ›› Issue (12): 1734-1745.doi: 10.3969/j.issn.1000-6362.2025.12.005

• 农业生物气象栏目 • 上一篇    下一篇

基于机器学习的多农艺性状玉米秸秆干重模拟方法

孙培豪,霍丽丽,张心怡,李奇辰,贾吉秀,赵立欣,姚宗路   

  1. 中国农业科学院农业环境与可持续发展研究所/农业农村部华北平原农业绿色低碳重点实验室,北京 100081
  • 收稿日期:2025-01-20 出版日期:2025-12-20 发布日期:2025-12-16
  • 作者简介:孙培豪,E-mail:srpihot@foxmail.com
  • 基金资助:
    国家重点研发计划项目(2023YFD1701505);财政部和农业农村部“国家现代农业产业技术体系”项目(CARS−02−31)

Machine Learning-based Simulation of Corn Straw Biomass Using Multi-agronomic Traits

SUN Pei-hao, HUO Li-li, ZHANG Xin-Yi, LI Qi-chen, JIA Ji-xiu, ZHAO Li-xin, YAO Zong-lu   

  1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Green and Low-carbon Agriculture in North China Plain, Ministry of Agriculture and Rural Affair, Beijing 100081, China
  • Received:2025-01-20 Online:2025-12-20 Published:2025-12-16

摘要: 基于263株成熟期玉米秸秆样本,采用Pearson相关系数(PCC)、方差膨胀因子(VIF)、灰色关联分析(GRA)和递归特征消除(RFE)方法,优化模型输入变量,确定以茎秆层次为核心的性状组合,探索农艺性状与机器学习结合的玉米秸秆干重评估最佳模型,以期为高效、低成本且适用于田间快速无损检测的秸秆干重预估提供技术支持。结果表明:以实际可操作与模拟模型性能为目标,筛选穗位茎粗、穗位高度、基部长轴、穗位叶面积、果穗粗、果穗长、基部短轴和株高8项核心性状的最优组合为模型输入参数。比较多种机器学习模型,极端随机森林(ETR)表现最佳,决定系数R20.92,RMSE13.52g,优于极端梯度提升(XGBoost)模型。特征重要性与SHAP解释性分析均揭示茎秆层次性状对秸秆干重评估的重要性,其中基部长轴与穗位茎粗的联合贡献度为41.7%。研究结果为提高秸秆生物量估算精度提供了技术支持,同时为玉米秸秆资源的可持续利用提供了参考依据。

关键词: 玉米秸秆, 农艺性状, 机器学习, 特征筛选, 回归模型

Abstract:

Based on 263 mature corn straw samples, Pearson correlation coefficient (PCC), variance inflation factor (VIF), grey relational analysis (GRA) and recursive feature elimination (RFE) were employed to optimize model input variables, with stem hierarchycentered trait combinations being identified and optimal machine learning models that integrate agronomic traits being explored for efficient, costeffective, and rapid nondestructive field estimation of corn straw dry weight. Experimental results identified eight optimal traits through rigorous evaluation of operational feasibility and predictive performance: ear stem diameter, ear height, basal long axis, ear leaf area, cob diameter, cob length, basal short axis and plant height. Machine learning evaluations demonstrated the Extra trees regressor (ETR) achieved superior predictive accuracy (R2=0.92, RMSE=13.52gcompared to eXtreme gradient boosting (XGBoost) implementations. Feature importance and SHAP interpretability analysis revealed stem-related traits as dominant predictors, with basal long axis and ear stem diameter collectively contributing 41.7% of predictive influence. The optimized trait combination offers a reliable, nondestructive approach for estimating corn straw biomass, providing a theoretical foundation and technical framework for the sustainable utilization of corn straw resources. 

Key words: Corn straw, Agronomic traits, Machine learning, Feature selection, Regression model