中国农业气象 ›› 2026, Vol. 47 ›› Issue (1): 75-84.doi: 10.3969/j.issn.1000-6362.2026.01.007

• 高标准农田智慧气象监测与应用专刊 • 上一篇    下一篇

基于高标准农田小气候要素的冬小麦土壤相对湿度模拟模型

谢家旭,成林,刘志雄,董宛麟   

  1. 1.湖北省气候中心,武汉 430070;2.河南省气象科学研究所,郑州 450003;3.中国气象局气象干部培训学院,北京 100081
  • 收稿日期:2024-12-26 出版日期:2026-01-20 发布日期:2026-01-16
  • 作者简介:谢家旭,E-mail:xjiaxu@163.com
  • 基金资助:
    中国气象局青年创新团队“高标准农田智慧气象保障技术”项目(CMA2024QN03);河南省科技攻关计划项目(252102320003);中国气象局创新发展专项项目(CXFZ2025J057)

Simulation Model of Winter Wheat Soil Relative Humidity Based on High−standard Farmland Microclimate Factors

XIE Jia-xu, CHENG Lin, LIU Zhi-xiong, DONG Wan-lin   

  1. 1. Hubei Climate Center, Wuhan 400070, China; 2. Henan Research Institute of Meteorological Sciences, Zhengzhou 450003; 3. China Meteorological Administration Training Center, Beijing 100081
  • Received:2024-12-26 Online:2026-01-20 Published:2026-01-16

摘要:

利用2021−2023年冬小麦生长期(10月−翌年5月)高标准农田小气候监测数据,在分析土壤水分对农田小气候要素响应滞后性的基础上,引入Optuna框架的超参数优化方法建立随机森林(Random forestRF)、BP神经网络(BP neural networkBPNN)和支持向量机回归(Support vector regressionSVR3种机器学习模型,预估3d5d10d3个预见期5个土层深度(10cm、20cm、30cm、40cm和50cm)的土壤相对湿度,以期为高标准农田土壤水分预估提供参考。结果表明:(1)冬小麦生长期内,河南省高标准农田5个土层深度土壤相对湿度呈波动下降趋势,播种出苗期5个土层的土壤相对湿度的时段平均值最大(90.4%),抽穗成熟期最小(73.9%)。(2)河南省高标准农田土壤相对湿度对不同小气候要素响应时间与强弱不一致。其中,对10cm20cm50cm处地温响应最慢但最强,响应时间集中在510d,相关系数为0.320.57;对空气相对湿度的响应最快但最弱,响应时间集中在13d,相关系数小于0.20。随着土层深度增加,土壤相对湿度与降水量、日平均气温和日最高气温相关关系呈递减趋势,与日最大风速、3个土层深处地温(10cm20cm50cm)相关关系则逐渐增加。(3不同预见期下5个土深处土壤相对湿度的模拟模型中,RF模型精度最高,决定系数(R2)为0.870.98均方根误差(RMSE为0.020.05平均绝对误差(MAE)为0.010.03SVR模型次之(R20.770.97,RMSE0.030.07,MAE0.020.04);BPNN模型精度较低(R2为0.600.97,RMSE为0.040.07,MAE为0.010.06)。综合评价RF模型更适合高标准农田土壤墒情短期预测,可为河南高标准农田精准水分管理提供技术支撑。

关键词: 高标准农田, 小气候要素, 机器学习, 土壤相对湿度

Abstract:

 This study utilized microclimate data from high−standard farmlands during wheat growing season (October to May) from 2021 to 2023. By investigating the lagged response of soil relative humidity (SRH) to microclimate factors, this study developed three machine learning models, Random Forest (RF), Backpropagation Neural Network (BPNN) and Support vector regression (SVR), using the Optuna framework for hyperparameter optimization. The models predicted SRH at three forecasting horizons (3−, 5− and 10−days) across five soil depths (10cm, 20cm, 30cm, 40cm and 50cm) to establish a predictive reference system for high−standard farmland. The results indicated that: (1) SRH exhibited a fluctuating decrease throughout winter wheat growth stages, with maximum values (90.4%) during sowing to emergence and minimum values (73.9%) at anthesis to maturity stage. (2) The response characteristics of SRH to microclimate factors varied significantly. SRH demonstrated the strongest yet slowest response to ground temperatures (r=0.32–0.57; 5–10d lag), and the weakest yet fastest response to air relative humidity (r<0.20; 1–3d lag). As soil depth increased, the correlation between SRH and precipitation, daily mean air temperature and daily maximum temperatures decreased, whereas correlations with maximum daily wind speed and soil temperatures (10cm, 20cm and 50cm depths) increased gradually. (3) Among the three simulation models, the RF model achieved superior performance across all prediction horizons (R²=0.87−0.98, RMSE=0.02−0.05, MAE=0.01−0.03), significantly outperforming SVR (R2=0.77−0.97, RMSE=0.03−0.07, MAE=0.02−0.04) and BPNN (R2=0.60−0.97, RMSE=0.04−0.07, MAE=0.01−0.06). A comprehensive evaluation showed that the RF model was better suited for short−term predictions of soil moisture in high−standard farmland, providing valuable technical support for precise water management in Henan. 

Key words: High?standard farmland, Microclimate factor, Machine learning, Soil relative humidity