中国农业气象 ›› 2026, Vol. 47 ›› Issue (1): 85-98.doi: 10.3969/j.issn.1000-6362.2026.01.008

• 高标准农田智慧气象监测与应用专刊 • 上一篇    下一篇

河南省高标准农田参考作物蒸散量影响因素及其模拟

褚荣浩,李萌,沙修竹,成林,姬兴杰,陈曦   

  1. 1.中国气象局·河南省农业气象保障与应用技术重点开放实验室,郑州 450003;2.河南省气象科学研究所,郑州 450003; 3.郑州航空工业管理学院民航学院,郑州 450046;4.河南省人工影响天气中心,郑州 450003;5.安徽省农业气象中心,合肥 230031
  • 收稿日期:2024-12-30 出版日期:2026-01-20 发布日期:2026-01-16
  • 作者简介:褚荣浩,E-mail:ronghao_chu@163.com
  • 基金资助:
    中国气象局高标准农田智慧气象保障技术青年创新团队项目(CMA2024QN03);国家自然科学基金项目(42305207);河南省科技攻关项目(252102321001;252102320003);河南省自然科学基金项目(252300420300;252300420288);中国气象局创新发展专项(CXFZ2025J057);中国气象局·河南省农业气象保障与应用技术重点实验室开放基金(AMF202403);河南省通用航空技术重点实验室开放基金(ZHKF-240208)

Influencing Factors and Simulation of Reference Crop Evapotranspiration in High−standard Farmland of Henan Province

CHU Rong-hao, LI Meng, SHA Xiu-zhu, CHENG Lin, JI Xing-jie, CHEN Xi   

  1. 1.China Meteorological Administration·Henan Key Laboratory of Agrometeorological Support and Applied Technique, Zhengzhou 450003, China; 2.Henan Institute of Meteorological Sciences, Zhengzhou 450003; 3.School of Civil Aviation, Zhengzhou University of Aeronautics, Zhengzhou 450046; 4.Weather Modification Center of Henan Province, Zhengzhou 450003; 5.Anhui Agricultural Meteorological Center, Hefei 230031
  • Received:2024-12-30 Online:2026-01-20 Published:2026-01-16

摘要:

针对小气候站数据质量等问题给参考作物蒸散量(ET0)估算带来的挑战,选取河南省高标准农田2020−202316个有完整数据记录的农田小气候站和13个临近国家气象站点逐日气象观测数据,采用13种典型ET0估算经验模型和8种机器学习模型,以Penman−Monteith(PM)模型为基准,评估不同模型的准确性,并在最优模型的基础上提供15ET0组合方案,以期提供一个准确、合适、简单的替代模型估算ET0,为高标准农田农业水资源管理提供科学指导。结果表明:除风速(WS)外,小气候站与国家站逐日观测的平均气温(Tave)、最高气温(Tmax)、最低气温(Tmin)、平均空气相对湿度(RH)、饱和水汽压差(VPD)和净辐射(Rn)拟合度较高,R2均高于0.654P<0.05),基于两套数据计算的ET0相关关系也较好,R20.880RMSE0.59mm13种经验模型中,综合考虑温度、辐射、相对湿度和风速的Valiantzas3(Val3)模型效果最佳R2=0.933RMSE=0.461mm),其次是考虑辐射和温度因子的Jensen−Haise(JH)模型(R2=0.916RMSE=0.774mm)。基于温度的Hargreaves−Samani(HS)模型的总体精度较高(R2=0.817RMSE=0.713mm);而基于质量传输的Penman(Pen)、WMOTrabert(Tra)模型的模拟精度较低,不建议作为ET0评估的选择方案。8种机器学习模型中,多层感知机(MLP)模型模拟精度最优(R2=0.998,RMSE=0.059mm),各输入参数重要性排序为Rn>VPD>WS>Tmax>Tave>Tmin>RH。基于MLP模型的15种模型输入参数组合方案中,相同输入参数条件下,机器学习模型的模拟精度总体优于经验模型,综合考虑Rn+Tave+RH+WS的组合模型表现最优

关键词: 高标准农田, 参考作物蒸散, 经验模型, 机器学习模型, 蒸散模拟

Abstract:

Accurate simulation of reference crop evapotranspiration (ET0) can provide scientific guidance for agricultural water resources management of high−standard farmland. However, issues such as data quality of microclimate stations pose some challenges for ET0 estimation. To solve above problems, this study selected the daily meteorological observation data of 16 farmland microclimate stations with complete data records and 13 nearby national meteorological stations in Henan province from 2020 to 2023, adopted 13 typical empirical models and 8 machine learning models to estimate ET0, and took Penman−Monteith (PM) model as the benchmark. The accuracy of each model was evaluated, and 15 types of ET0 estimation combination schemes based on the optimal model were given to find accurate, suitable and simple alternative models to estimate ET0The results showed that in addition to wind speed (WS), the fitting degrees of average temperature (Tave), maximum temperature (Tmax), minimum temperature (Tmin), mean air relative humidity (RH), vapor pressure deficit (VPD) and net solar radiation (Rn) observed between microclimate stations and national stations were generally higher than 0.654 (P<0.05). The correlation between ET0 calculated based on the above two datasets was also higher, with R2 of 0.880 and RMSE of 0.588mm. Among the 13 empirical models, the Valiantzas3 (Val3) model considering temperature, radiation, relative humidity and wind speed exhibited the best effect (R2=0.933, RMSE=0.461mm), followed by Jensen−Haise (JH) model considering radiation and temperature factors (R2=0.916, RMSE=0.774 mm). The overall accuracy of the temperature−based Hargreaves−Samani (HS) model was high (R2=0.817, RMSE=0.713mm), while the simulation accuracy of the mass−transfer based Penman (Pen), WMO and Trabert (Tra) models was lower and there were not recommended as the choice of ET0 simulation. Among the 8 machine learning models, the simulation accuracy of Multilayer Perceptron (MLP) model was the best (R2=0.998, RMSE=0.059mm), and the importance order of each input parameter was: Rn>VPD>WS>Tmax>Tave>Tmin>RH. Among 15 different model input parameter combination schemes based on the MLP model, the simulation accuracy of the machine learning model was generally better than that of the empirical model under the same input parameter conditions, with the combined model of Rn+Tave+RH+WS being the best.

Key words: High?standard farmland, Reference crop evapotranspiration, Empirical model, Machine learning model, Evapotranspiration simulation