Chinese Journal of Agrometeorology ›› 2017, Vol. 38 ›› Issue (02): 65-75.doi: 10.3969/j.issn.1000-6362.2017.02.001

Previous Articles     Next Articles

Prediction on the Possible Air Temperature Change over the Middle and Lower Yangtze River Basin under the RCP Scenarios

LIU Wen-ru, JU Hui, CHEN Guo-qing, LIU En-ke, LIU Qin   

  1. 1.State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an 271018, China; 2.Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing 100081
  • Received:2016-06-11 Online:2017-02-20 Published:2017-02-15

Abstract: The spatio-temporal characteristics of mean temperature was investigated under high-end path Representative Concentration Pathway (RCP) 8.5 and stable path RCP4.5 scenarios based on the 0.5°×0.5° grid daily meteorological data output by the scenario of RCP of BCC-CSM1-1 (Beijing Climate Center Climate System Model version1-1) over the middle and lower Yangtze River during from 2021-2050, which was selected to downscale the model data to 62 national weather stations by the bilinear interpolation method. Subsequently, the RCPs scenarios data during 2021-2050 was corrected using variance correction method from non-linear equation of the simulated and observed data over the reference period of 1961-1990. The results described that the simulation of RCP scenario output data was detected to be satisfactory. The annual mean temperature would significantly increase over the middle and lower Yangtze River, whereas the amplitude of the temperature increase gradually reduced overall from south to north under the RCP8.5 and RCP4.5 scenarios. For both scenarios, the trend of temperature increased in four selected seasons with the higher change rate in summer. Accordingly, for the RCP8.5 scenario, the increasing rate of spring and winter was found to be higher than that in the RCP4.5 scenario. Under the RCP8.5 scenario, the highest value was depicted in the central of research area for annual mean temperature, and the warming rate was found to be higher in spring and summer than other seasons and the most of station without passed the significant level (P<0.05) in winter. While for the RCP4.5 scenario, the annual mean temperature was detected to reduce gradually from north to south. Thereby, the increasing rate was found to be higher significantly in summer than in winter.

Key words: Representative concentration pathway scenario, Prediction of temperature, Data correction, Bilinear interpolation method, Middle and lower Yangtze River