Chinese Journal of Agrometeorology ›› 2021, Vol. 42 ›› Issue (11): 939-950.doi: 10.3969/j.issn.1000-6362.2021.11.005

Previous Articles     Next Articles

Effects of Various Climate Scenarios on Yield of Typical Rain-Fed Spring Maize in Liaoning Based on WOFOST Model

MA Zhao-jun, SHUAI Yan-min, SHAO Cong-ying, QU Ge, TIAN Yan-jun, WU Hao, WAN Hua-wei, PENG Xiu-yuan, XIAO Wan-xin, ZHANG Shu-ping   

  1. 1.Liaoning Technical University, College of Surveying and Mapping and Geographic Science, Fuxin 123000, China;2.Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences, Research Center of Green Silk Road, Urumqi 830011; 3.Research Center for Ecology and Environment of Central Asia, Chinese Academy of Science, Urumqi 830011; 4.University of Chinese Academy of Sciences, Beijing 100049; 5.Satellite Environment Center, Ministry of Ecology and Environment, Beijing 100094; 6.Institute of Information Studies, LAAS, Shenyang 110161; 7.Corn Research Institute Liaoning Academy of Agricultural Sciences,Shenyang 110161
  • Received:2021-03-27 Online:2021-11-20 Published:2021-11-15

Abstract: As the required climatic factors to guarantee the healthy growth of crops, the magnitude, variation and spatial distribution of air temperature, precipitation and solar radiation potentially can determine the planting structure and grain yield of regional agriculture. The dependence of crops on “temperature-humidity-wind” climate condition elevates its sensitiveness on climate changes, as that exhibited by thermophiles and hydrophilic maize widely planted in China. Thus, under modern climate situation with an increasing intensity of changes, it is essential to further understand the related response of crop yields in serving the food and agriculture security. The climatic characteristics in Xinmin and Chaoyang stations were firstly analyzed in this study based on the historical meteorological data over past 40 years, and then constructed different climate scenarios according to the required climate factors coupled with warming-drying trend of regional climate change, and adopted different ground data suits to calibrate WOFOST model and verify its performance. Authors used the localized WOFOST model to simulate grain yield trends of typical rain-fed spring maize in Liaoning under configured climate scenarios. The results showed that: (1) the simulation accuracy of localized WOFOST model had good performance with the normalized root mean square errors of 8.78% and 5.96%, and the agreement index of 0.82 and 0.96, respectively for simulated and measured results. (2) Spring maize yields of both Xinmin and Chaoyang showed negative correlation with temperature and positive relationship with precipitation over the discussed climate scenarios. Under different gradients (increasing temperature, decreasing precipitation and increasing radiation) of climate scenarios, the yield decrease of Xinmin (temperature +1.2°C, precipitation −25%, radiation +4%) and Chaoyang (temperature +1.4°C, precipitation −25%, radiation +3%) spring maize yields respectively reached 92.5% and 85.9% relative to that of normal condition, which can be used as a cautionary scenario for rain-fed spring maize crop failure in the study area. (3) Compared with the significance effect of precipitation on the spring maize yields of Xinmin, Chaoyang showed apparent sensitiveness to temperature, but yields of both stations haven’t shown a marked variation within the given changes of solar radiation.

Key words: Spring maize, Climate change scenarios, WOFOST model, Yield