Top Read Articles

    Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Influence Report of Weather on Agricultural Production in Summer 2022
    ZHAO Xiao-feng, HAN Li-juan, LI Sen, HE Liang, LIU Wei
    Chinese Journal of Agrometeorology    2022, 43 (11): 945-948.   DOI: 10.3969/j.issn.1000-6362.2022.11.008
    Abstract569)      PDF(pc) (359KB)(177)       Save
    In the summer of 2022 (June-August), the national average air temperature was 22.3℃, which was 1.1℃ higher than the same period of the normal year(1991−2020). There were sufficient thermal resources in major agricultural areas. The national average high temperature days reached 14.3d, which was 6.3d more than that in the same period of from 1991 to 2020, and had been the maximum value since 1961. The national average precipitation was only 290.6mm, being the second smallest in the same period since 1961. The national average sunshine duration was 677.4h, which was close to the same period in the normal year and 53.7h more than that in 2021. The weather in most summer-harvesting areas was fine, which was conducive to the full maturity and quality improvement in grain and oil crops. There were two obvious precipitation events in late June, which effectively alleviated the previous drought in the northern summer-sowing areas. However, the deviation of soil moisture was not conducive to timely summer planting in some areas in Shaanxi and Gansu. Most of the agricultural areas were exposed to sufficient light and heat, with no occurrence of obvious cloudy and rainy weather. There was abundant precipitation and suitable soil moisture in the northern agricultural areas, which was in favor of the growth, development and yield formation for local crops such as corn and soybeans. The continuous high temperature and lack of rain in the southern agricultural areas led to the development of agricultural drought and heat stress for crops such as rice and maize. The meteorological conditions limited the stable growth of crops, economic trees and fruits. Superimposed precipitation occurred in Liaoning and Shandong, resulting in waterlogging in some lowland areas. Moreover, periodical low temperature in early June and late August affected the growth, development and grain filling of -harvesting crops in the Northeast.
    Related Articles | Metrics | Comments0
    Thought on Statistics Methods of Temperature in the Hottest and Coldest Month-Long Periods
    Erkejan HOYHAZI, JIANG Hui-fei , DAI An-ran
    Chinese Journal of Agrometeorology    2021, 42 (08): 693-702.   DOI: 10.3969/j.issn.1000-6362.2021.08.007
    Abstract465)      PDF(pc) (468KB)(340)       Save
    The hottest and coldest month-long periods' temperatures are common indicators of Agro-climatical division. Commonly the hottest/coldest period is replaced by the full month of July/January directly, but this fixed full month is not an accurate reflection of the actual hottest /coldest period. The hottest/coldest period of the year changes in temperatures and starting to end dates every year. In this paper, the length of the month-long period was set to be 31 days, as the common hottest and coldest months, July and January, are 31 days long. By using the daily temperature data from 1951 to 2018, collected at Changde weather station in Hunan province, the temperature of the hottest/coldest 31-day period was calculated using moving average approaches.  The results showed that, (1)the hottest period spans from late June to early September, and the average hottest 31-day period was from mid-July to mid-August. Comparing the average hottest 31-day period and the full months of July and August with the actual highest 31-day period temperatures, the average temperature error was 0.5℃, 0.9℃, and 1.7℃ colder, respectively. (2) The coldest period spanned from early December to mid-March, and the average coldest 31-day period is from early January to early February. Compared to the actual coldest 31-day period, the temperatures of the average coldest 31-day period and the full months of January and February were 1.0℃, 1.1℃, and 2.9℃ warmer than the temperature of the actual month-long period, respectively. (3) With a temperature error within 1.0℃ considered to be acceptable, the average hottest 31-day period' s average temperature was 90% accurate in calculating the actual hottest 31-day period' s average temperature while using July' s temperature is only 61.2% accurate, which demonstrated that the average hottest 31-day period was more accurate than July. (4) With a temperature error within 2.0℃ and temperature accuracy above 80% considered to be acceptable, the effect during the average coldest 31-day was slightly better than January. In summary, the temperature error of the average 31-day hottest/coldest period was less than these of July/January, and the accuracy is the opposite. Therefore, it is recommended that when estimating the temperature of the hottest/coldest month-long period to not use the fixed full month of July/January but instead use the average hottest/coldest 31-day period while still taking into consideration in the adjustments from the actual temperature.
    Related Articles | Metrics | Comments0
    Current Situation and Research Prospect of Agrometeorology in the New Stage
    PAN Zhi-hua
    Chinese Journal of Agrometeorology    2023, 44 (04): 327-332.   DOI: 10.3969/j.issn.1000-6362.2023.04.007
    Abstract442)      PDF(pc) (285KB)(358)       Save
    At present, China has been entering a new stage of building an agricultural power, and agrometeorology is facing unprecedented challenges and opportunities for development. In view of the new situation of smart agricultural production, food security, green development and climate change, it is urgent for agrometeorology to establish the quantitative relationship between climate factors and agricultural production, make scientific and rational use of climate resources, and improve the utilization rate of climate resources. The major tasks of agrometeorology are to deepen the research content, expand the research field and innovate the theory and method, and the key research directions include agrometeorological basis, climate change adaptation, greenhouse gas emission reduction, efficient utilization of agro-climatic resources, agro-microclimate regulation, and climate-smart agriculture. Agrometeorology needs to accelerate its development and stay ahead of other basic agricultural disciplines.
    Related Articles | Metrics | Comments0
    Based on the Phenological Model to Study the Possible Changes of Apple Flowering Dates under Future Climate Scenarios in Shaanxi Province
    WANG Run-hong , RU Xiao-ya , JIANG Teng-cong , WANG Jin-hong , WANG Zhao , SU Bao-feng , ZHANG Dong, YU Qiang , FENG Hao , HE Jian-qiang
    Chinese Journal of Agrometeorology    2021, 42 (09): 729-745.   DOI: 10.3969/j.issn.1000-6362.2021.09.002
    Abstract425)      PDF(pc) (1975KB)(338)       Save
    Shaanxi has large apple cultivation areas and high apple yields, but its yields are susceptible to late frost. The occurrence of freezing damage is closely related to the apple flowering date and the time of late frost. Therefore, accurate prediction of apple flowering date and research on the temporal and spatial changes of apple flowering date is of great significance to the disaster prevention and mitigation of apple production. In this study, the phenological models (e.g. Spring warming model, Sequential model, Overlap model, and Parallel model) were used to study the variations of apple flowering date (including both first flowering date and end flowering date) in Shaanxi Province under the background of climate change. Firstly, four phenological models were selected to evaluate the results of model simulation on apple flowering date in Shaanxi apple producing areas, and the optimal flowering prediction models in the study area needed to be screened out. Then, based on the selected optimal model, the apple flowering date of each representative station (e.g. Luochuan, Baishui, Fengxiang, and Changwu) during the historical period (1980−2019) was simulated. Finally, based on the future meteorological datasets generated by 33 Global Climate Models (GCMs), the selected model was used to simulate the apple flowering date at each representative station from 2021 to 2100 under the two scenarios of RCP4.5 and RCP8.5, and the temporal and spatial variations of flowering date were analyzed. The results showed that the Sequential model was the optimal model to simulate the apple flowering dates in the Eastern and Western area of Weibei, while the Parallel model was the optimal model for Yan'an and the Western area of Guanzhong. From 1980 to 2019, the first flowering date of representative stations was advanced by 3.4−4.7d·10y−1, and the end flowering date of representative stations was advanced 3.3−4.6d·10y−1. The apple flowering date in the study area was gradually delayed from southeast to northwest, and the average annual flowering duration was about 10−11 days. Under the RCP4.5 scenario, the advanced rate of first and end flowering date was 0.7−0.9d·10y−1 and 0.6−0.8d·10y−1 at representative stations from 2021 to 2100. Compared with 1980−2019, the average first and end flowering date for 2021 to 2060 were advanced 0−4.4 days and 0−5.0 days at representative stations, and the average first and end flowering date for 2061 to 2100 were advanced 3.4−7.6 days and 2.6−8.2 days at representative stations. Under the RCP8.5 scenario, the advanced rate of first and end flowering date were 1.3−1.8d·10y−1 and 1.3−1.6d·10y−1 at representative stations from 2021 to 2100. Compared with 1980−2019, the average first and end flowering date for 2021 to 2060 were advanced 1.3−5.9 days and 1.0−6.1 days at representative stations, and the average first and end flowering date for 2061 to 2100 were advanced 6.7−12.4 days and 6.2−12.3 days at representative stations. Under future climatic conditions, the spatial distribution of apple flowering date was basically the same as the historical period, but the duration of flowering date was slightly shortened. For the first time, this study combined the flowering date prediction model with future climate datasets to study the apple flowering date variations in Shaanxi apple producing areas, and it will provide some theoretical basis for coping with the freezing damage in flowering dates caused by climate change in Shaanxi apple producing area.
    Related Articles | Metrics | Comments0
    Effects of Duck Manure Replacing Chemical Fertilizer on Soil Nutrient Characteristics and Pear Quality in Pear Planting
    XUE Peng-ying, CHEN Yong-xing, ZHU Zhi-ping, HAO Dong-min, SONG Man
    Chinese Journal of Agrometeorology    2022, 43 (12): 1015-1024.   DOI: 10.3969/j.issn.1000-6362.2022.12.006
    Abstract425)      PDF(pc) (590KB)(103)       Save
    The purpose of this study was to explore the effects of duck manure application on soil environmental quality and pear quality and to promote the scientific application of duck manure to partially replace chemical fertilizers in pear planting. Under the condition of equal nitrogen substitution, the duck manure alternative fertilizer program in this study was divided into five groups including the control group (CK), 30% (DM1), 40% (DM2), 50% (DM3), and 60% (DM4). The duck manure was applied to the pear tree soil in April and July. Soil and pear samples were collected in October. The soil environmental quality (soil pH, soil nutrients, heavy metals, antibiotics) and pear quality parameters (soluble solids, soluble sugars, vitamin C) were also analyzed. The results showed that all the duck manure replacement treatments (DM1-DM4) could significantly increase the soil pH (6%−21%) compared with the control group, and the organic matter of deeper soil (40−60cm) was improved. The most significant effect on increasing the content of available phosphorus and available potassium in the soil was also found in the DM3 group. Fortunately, the contents of heavy metals in different soil layers of each treatment fully meet the requirements of pollution-free and green food producing areas for soil environment. The results also indicated that the application of duck manure improved the pear quality, and the soluble solids, soluble sugars, and vitamin C of pear were increased by 5.21%−17.44%, 2.50%−8.45%, and 0.39%−11.01%, respectively. The results showed that 30% duck manure replacing had the best effect on improving pear quality, while 50% duck manure replacing had the best effect on improving soil environment quality.
    Related Articles | Metrics | Comments0
    The Scientific Problem and Improvement of the Concepts of Accumulated Temperature and Heat Resource
    ZHANG Zi-yuan, ZHENG Da-wei, PAN Yu-ying, PAN Zhi-hua
    Chinese Journal of Agrometeorology    2021, 42 (08): 686-692.   DOI: 10.3969/j.issn.1000-6362.2021.08.006
    Abstract402)      PDF(pc) (438KB)(430)       Save
    The concepts of accumulated temperature and heat resources have been widely presented in domestic literature and teaching materials, and accumulated temperature is usually as the main form of representation of heat resource. But its traditional definition obviously violates the principles of physics, and the measurement units also have not been unified. It urgently needs to be given an accurate scientific interpretation and further standardized. Based on the origin and development history of the concepts of accumulated temperature and heat resources, the problems in its practical application are reviewed in this paper, and the application frequency, geographical distribution characteristics of the term of accumulated temperature and its synonyms through Web of Science related literature are statistically analyzed and compared. The results show that, although accumulated temperature is the main indicator of traditional term of agricultural heat resources and is widely used, however, in fact, plants and cold-blooded animals do not need a certain amount of heat energy to complete a certain stage of growth and development, but require suitable temperature conditions and necessary duration. Excessive heat or too high temperature will cause damage to organisms, and some species even require relatively lower temperatures. On the other hand, literature search and statistics show that the term “accumulated temperature” has been rarer and rarer used in the international academic communities now, and the term “heat resource” is also rarely used in authoritative agricultural meteorological literature. In order to promote a more accurate and scientific term, it is recommended to stop use of the term “accumulated temperature” in Chinese Scientific Journals and to change into "integrated temperature" or "thermal time". And the unit should be unified into "℃·d" or “℃·h” and not “℃”. The term of “heat resource” is also changed to “temperature resource” and broadened, i.e. the synthesis of temperature conditions and their duration conducive to growth and development of plants and cold-blood animals. It will give full scientific significance without affecting the large number of applications and achievements of the current accumulated temperature theory, and will promote further development of agricultural meteorology and related disciplines.
    Related Articles | Metrics | Comments0
    Predicting Potential Suitable Planting Area of Rice in China under Future Climate Change Scenarios Using the MaxEnt Model
    LV Tong, GUO Qian, DING Yong-xia, LIU Li, PENG Shou-zhang
    Chinese Journal of Agrometeorology    2022, 43 (04): 262-275.   DOI: 10.3969/j.issn.1000-6362.2022.04.002
    Abstract373)      PDF(pc) (3631KB)(368)       Save
    To provide a scientific basis for reasonably planting rice in China, this study investigated the major climatic factors affecting the rice distribution and predicted the changes of rice suitable areas in the past and future periods, using the distribution data of rice, the high-spatial-resolution historical (1970−2000) and future (2081−2100) climate data, and the MaxEnt model. The results showed: (1) the main climatic factors affecting the distribution of early rice and late rice were precipitation of driest month, mean temperature of warmest quarter, and precipitation of driest quarter, and those of single-season rice were annual mean temperature and precipitation of warmest quarter; (2) In the historical period, the suitable planting areas for early rice and late rice in China were mainly in the middle and lower reaches of the Yangtze River and the south of the Yangtze River, accounting for 14.26% and 13.01%, respectively, where most of the regions were slight suitable areas, accounting for 7.66% and 6.62%, respectively. The area of the suitable planting area for one season rice accounted for 45.46%, and most of the regions were slight suitable areas and suitable areas, accounting for 23.47% and 18.86%, respectively; (3) Compared with the historical period, the future suitable planting areas of early rice under the SSP126, SSP245, and SSP585 scenarios increased by 6.27, 9.26, and 16.66 percentage points, respectively; the future suitable planting areas of late rice increased by 4.26, 5.55, and 10.97 percentage points, respectively; and the suitable planting area of one season rice increased by 11.34, 18.46 and 28.31 percentage points, respectively. To the end of the century, the suitable planting areas for early rice would expand to Sichuan, Chongqing and Huang-Huai area, the suitable planting areas for late rice would expand to Sichuan, Chongqing and a small area of the north of the middle and lower reaches of the Yangtze River, and the optimum suitable areas for one-cropping rice showed spatial expansion to the North China Plain and Northeast China. In general, future climate change will contribute to the expansion of suitable rice planting areas over China.
    Related Articles | Metrics | Comments0
    Study on “Cold Chamber Effect” of Red Plum Apricot Frost Proof Shed Based on Dynamic Analysis of Heat Balance and Heat and Moisture Parameters
    JIANG Rui-yang, ZHANG Wei-jiang, MA Yi, MA Fang, FENG Na, LI Wei-jian, JIANG Chang
    Chinese Journal of Agrometeorology    2022, 43 (03): 177-193.   DOI: 10.3969/j.issn.1000-6362.2022.03.002
    Abstract358)      PDF(pc) (1815KB)(274)       Save
    A frost-proof shed was designed to prevent perennial frost disaster suffered by red plum apricots in the southern area of Ningxia. During the tests at night, the ambient temperature in the shed was always lower than that outside the shed, resulting in a "cold chamber effect”, and the desired effect was not achieved. Therefore, there was a test that needed to probe into the mechanism of the “cold chamber effect” in the frost-proof shed to provide a theoretical basis for improving the design of the frost-proof shed accurately and prevent frost disaster effectively. According to the principle of mass and heat balance, the test was researched the heat budget of the cover layer, the moist air in the shed, and the soil layer respectively then studied the heat accumulation in the whole system of the frost-proof shed during the period after the covering of the shed cloth to the time before its folding on the next day. Finally, the test explored the influence of relative humidity and the changes of moist air on phase transition latent heat by analyzing the dynamic process of main heat and humidity parameters in the shed. The study results show that: (1) when the “cold chamber effect” occurs at night in spring and autumn, both the soil layer and the cover layer become the part losing heat due to more heat loss, while the moist air in the shed becomes the part gaining heat due to more heat gain. (2) In spring and autumn, the accumulated heat gain is lower than the accumulated heat loss in the shed during the period after the covering of the shed cloth to the time before its folding on the next day, resulting in the heat imbalance in the shed. (3) There is a significant difference in the heat and humidity parameters of the moist air in the shed and those outside the shed (except the saturated water vapor pressure in the shed in spring); The dynamic changes of the water vapor density and the dew point temperature in the shed at night can reflect the change rules of latent heat caused by evaporation and condensation; The low temperature and higher water vapor density in the shed make the saturated water vapor pressure infinitely close to the actual water vapor pressure, resulting in the relative humidity in the shed persistently on the high side. The accumulated heat gain of the frost-proof shed for red plum apricots is always less than the accumulated heat loss at night, and the soil layer and the cover layer are the most important parts losing heat, and thus the “cold chamber effect” appears in the case of heat imbalance.
    Related Articles | Metrics | Comments0
    Discussion on the Optimal Delayed Harvest Date of Ice Grape in Yili River Valley
    HUANG Juan, GU Ya-wen, LIU Ji-jiang, HU Qi-rui, WANG Man
    Chinese Journal of Agrometeorology    2021, 42 (06): 486-494.   DOI: 10.3969/j.issn.1000-6362.2021.06.004
    Abstract342)      PDF(pc) (742KB)(182)       Save
    Ice wine belongs to the highest class of high-quality wines and is recognized as the best wine in the world. The quality of ice grapes plays a decisive role in the quality of ice wine, and the differences in climate conditions in different regions and interannual climate changes have a great impact on the quality of ice grapes. Different harvest dates after maturity correspond to different weather conditions and fruit quality. Therefore, it is particularly important to determine the harvest date of ice grapes. In order to determine the optimal delayed harvest date of ice grape in Yili River Valley, ice grapes from the observation area were harvested in stages from 2018 to 2019. This experiment was conducted in Yining County and the grape was harvested in different dates and then the contents of the total sugar, total acid, and sugar-acid ratio in grape fruits were measured in the laboratory thereafter. The correlation analysis, partial regression analysis and multiple linear regression analysis were applied to figure out the quality change rule, inter-annual quality change rule, and the relationship between quality and meteorological factors of ice grapes in different delayed harvest periods. Conclude the best harvest period when ice grapes reach the ‘best quality’ in Yili River Valley. Provide a reference for optimizing the quality of ice grapes and rationalizing regional management in the future. The results showed that:(1)the content of the total sugar and total acid in 2018 and 2019 had the same trend with the delay of the harvest date. The total sugar gradually increased with the delay of the harvest date, and the total acid climbing firstly and then fell down. (2)Average temperature of 120 days before harvest(T120), average minimum temperature of 120 days before harvest(Tmin120), average daily temperature range of 30 days before harvest(ΔT30) were the most important factors affected total sugar content of ice grape. Average temperature of 120 days before harvest(T120), average minimum temperature of 120 days before harvest(Tmin120), the average relative humidity of 120 days before harvest(RH120), and the average relative humidity of 60 days before harvest(RH60) were the most important factors affected total acid content of ice grapes. (3)7.5℃≤T120≤18.3℃, 4.8℃≤Tmin120≤9.6℃, 48%≤RH60≤70%, 52.3%≤RH120≤64.8% were the suitable range of meteorological conditions required to form the ‘best quality’. The best harvest date is reached when the current weather conditions meet the above range. The optimal harvest date of ice grapes in Yining County was November 21 in 2018, the optimal harvest date of ice grapes in Yining County was December 1 in 2019. According to the meteorological conditions, the optimal harvest date of ice grapes in Yining County in 2020 was verified. The results are consistent with the reality, indicating that the research results can be used for practical promotion.
    Related Articles | Metrics | Comments0
    Spatiotemporal Changes of Double Cropping Rice Phenology in South China and Relationship with Climatic Conditions
    LI Wei-guang, HOU Mei-ting, ZHANG Jing-hong, CHE Xiu-fen, CHEN Xiao-min
    Chinese Journal of Agrometeorology    2021, 42 (12): 1020-1030.   DOI: 10.3969/j.issn.1000-6362.2021.12.004
    Abstract339)      PDF(pc) (1361KB)(388)       Save
    In order to explore the sensitivity of rice growth and development to climate change, and to estimate the contribution of climate change and varieties change to the change of rice phenology in South China, the phenological and meteorological observation data of double cropping rice planting in South China from 1981 to 2013 were selected for analysis. Theil-Sen estimation linear tendency rate and Mann-Kendall trend significance test were used to analyze the change trend and spatial distribution characteristics of double cropping rice phenology. Different from other regions, the sowing date of early rice in South China is ahead of schedule and the mature period of late rice is delayed slightly. The vegetative growth period of early and late rice was shortened, while the reproductive growth period was prolonged. The length of vegetative and reproductive growth periods of early rice and late rice increased with the increase of precipitation and sunshine hours, and decreased with the increase of temperature; the length of growth period was shortened by 0.5−4.7 days when the average temperature increased by 1℃. The analysis of the contribution rate of climate change and varieties to the impact of rice phenology showed that the influence of varieties change on the long-term length of early and late rice was greater than that of climate change. In the past 30 years, early rice tended to choose the varieties with long vegetative and reproductive growth period, late rice tends to choose varieties with short vegetative growth period and long reproductive growth period.
    Related Articles | Metrics | Comments0
    Research Progress on the Mechanism of High Light Use Efficiency in Wheat
    LI Yi-bo, TAO Fu-lu
    Chinese Journal of Agrometeorology    2022, 43 (02): 93-111.   DOI: 10.3969/j.issn.1000-6362.2022.02.002
    Abstract335)      PDF(pc) (667KB)(349)       Save
    Crop yield is dependent on crop biomass and harvest index. The increases in crop yield in the past benefit mainly from the increase in harvest index, the increase in biomass has been small. Light use efficiency is a bottleneck to further increase crop biomass and yield. Wheat (Triticum aestivum L.) is a widely cultivated cereal crop globally, providing energy to up to 20% of the world's population. It is necessary to reveal the intrinsic mechanism and extrinsic factors affecting the light use efficiency of wheat, which is important for improving the utilization efficiency of crop resources and productivity. Achieving high light efficient production of wheat under limited natural resources has become the focus of study at home and abroad. Here, the definition of light use efficiency, the main processes, the characteristics of light use efficiency in wheat were summarized from relevant references, showing a more significant potential to improve light use efficiency. The effects of external factors such as light, water, nutrient and tillage system on wheat light use efficiency were summarized. The results indicated that light use efficiency was regulated by internal factors such as photosynthesis at the individual plant scale, and by abiotic factors such as temperature, precipitation and tillage practices at the field scale. The current problems and the adaptation mechanism of wheat in the context of climate change were also analyzed, aiming to provide a theoretical reference for the practical research of the high light use efficiency of wheat. Future research on light use efficiency can use high-throughput phenotypic observation techniques combined with molecular markers to design ideotypes in the target environment, providing scientific evidence for crop breeding.
    Related Articles | Metrics | Comments0
    Spatiotemporal Patterns of Seasonal Mean Temperature Variations in China During 2001−2100
    FU Da-rong, CHEN Xiao-die, LIU Yi-ting, LIU Li, PENG Shou-zhang
    Chinese Journal of Agrometeorology    2022, 43 (09): 681-691.   DOI: 10.3969/j.issn.1000-6362.2022.09.001
    Abstract331)      PDF(pc) (5662KB)(236)       Save
    Based on the 1-km resolution long time series temperature data set, the spatial and temporal patterns of the magnitude and trend of the four-season mean temperature changes in the historical period (2001−2020), and in the future period (2021−2100) under the low forcing scenario (SSP119), medium forcing scenario (SSP245) and high forcing scenario (SSP585) are analyzed using the distance level method, Mann-Kendall trend test method and Sen's slope estimation method, with a view to providing a basis for developing detailed regional adaptation strategies in the context of climate warming. The results show that: (1) compared with the historical period, the average temperature of the four seasons in the future will increase in general under the three scenarios, and the area with the largest increase in summer is 66.70% under SSP119, 37.37% and 99.06% under SSP245 and SSP585, respectively. At the same time, the overall variation range of seasonal mean temperature under the three SSP scenarios is significantly different, which is moderated under SSP119, followed by SSP245, and the largest increase range under SSP585. (2) In the historical period, compared with other seasons, the significant rise in mean temperature in spring had the fastest rate (0.68±0.24℃∙10y−1) and the largest area share (14.44%), mainly distributed in North China, Yunnan, Guizhou, Jiangsu and Zhejiang provinces. (3) In the future period, the regional seasonal mean temperature in China shows an overall rising trend with significant spatial differences; among them, under the SSP119 scenario, the regions with significantly rising mean temperature in spring and winter are mainly concentrated in southern China and the local area of the Qinghai-Tibet Plateau, accounting for 29.03% and 25.58% of the area, respectively; under the SSP245 and SSP585 scenarios, the seasonal mean temperature in all regions of China shows a significant upward trend; under the SSP585 scenario, the seasonal mean temperature in the north increases at a faster rate than that in the south, and the national region has the fastest significant rate of increase in winter (0.66±0.09℃∙10y−1).
    Related Articles | Metrics | Comments0
    Characteristics of Drought Distribution for Summer Maize over Whole Growth Period in Huang-Huai-Hai Plain Based on Crop Water Deficit Index
    ZHANG Xiao-xu, SUN Zhong-fu, ZHENG Fei-xiang, LIU Jiang, LI Chong-rui, WANG Yi-hao
    Chinese Journal of Agrometeorology    2021, 42 (06): 495-506.   DOI: 10.3969/j.issn.1000-6362.2021.06.005
    Abstract330)      PDF(pc) (3886KB)(356)       Save
    The Huang-Huai-Hai plain is the main production area of summer maize in China, which is also one of the worst-hit drought areas. The loss of summer maize yield caused by drought has seriously affected China’s grain production. Therefore, it is of great significance to clarify the law of drought in this area for the formulation of anti-disaster measures and the guarantee of grain production. Base on the meteorological data of 76 stations from 1981 to 2015 in Huang-Huai-Hai plain was used in this study, the crop water deficit index(CWDI) as the drought index was used to analyze the spatial-temporal evolution characteristics of drought for summer maize in this area. The results showed that the overall changing trend of CWDI in the whole summer maize growth period increased first, and then decreased with the highest drought frequency occurring in sowing-seedling stage and tasseling-milk ripe stage. Drought was getting worse in the summer maize growth period during the period of 2011 to 2015, and southern Hebei, northern Henan and Shandong province exhibited the highest CWDI value. The slight drought was the main drought type in this area in the whole summer maize growth period, the moderate light drought ranked second and the severe and extra severe drought was barely. The frequency of drought in the northern area was higher than that in the southern area, as well as the western area was higher than that in the eastern. The ratio of extra severe drought occurring station was the highest in the sowing-seedling stage, and the ratio of slight drought occurring stations was the highest in the other growth periods.
    Related Articles | Metrics | Comments0
    Evaluation and Projection of Temperature in Southwestern China by CMIP6 Models
    JIN Cheng-xiu, JIANG Chao, ZHANG Xi-yue
    Chinese Journal of Agrometeorology    2022, 43 (08): 597-611.   DOI: 10.3969/j.issn.1000-6362.2022.08.001
    Abstract325)      PDF(pc) (5094KB)(280)       Save
    Using on the CN05.1 monthly average temperature observation data set from 1961 to 2014 and the output data from 19 global climate models from Coupled Model Intercomparison Project Phase 6 (CMIP6), the simulation ability of CMIP6 models on the climatology spatial distribution and interannual variability of temperature in Southwestern China was systematically evaluated by means of Taylor diagram, Taylor index and interannual variability skill score. The variation characteristics of future temperature in this area were predicted under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios. The results showed that: (1) compared with other seasons, most CMIP6 models had the best performance in simulating the spatial distribution of autumn temperature climatology during 1961-2014; and CMIP6 models underestimated the interannual variability of seasonal and annual average temperature. Among the 19 models, the best models simulated the temperature in Southwestern China were ACCESS-CM2, CMCC-CM2-SR5 and CMCC-ESM5. (2) The multi-model ensemble mean(MME) of 3 best-fit models simulated the climatology spatial distribution and interannual variability of average temperature better than the MME of 19 models. (3) Compared with the multi-year average temperature observed in the same period during 1961−2014, the seasonal and annual average temperature in Southwestern China showed an upward trend in the future under the four climatic scenarios, seasonal and annual average temeprature increased by 0.94−3.48℃. Under the four scenarios, the increase of average temperature in summer was the largest(2.17−3.48℃) and the interannual fluctuation range was the smallest, the increase of temperature in winter was the smallest(0.94−2.24℃) and the interannual fluctuation range was the largest. (4) In the early of 21st century, there was little difference in the increase of seasonal and annual average temperature under 4 scenarios. During the middle of the 21st century, the upward trend of seasonal and annual average temperature in high radiation forcing scenarios was gradually larger than that in low radiation forcing scenarios. (5) Under the four scenarios, the anomaly values of multi-year average temperature at the early (2015−2034), middle (2045−2064) and end (2081−2100) period of 21st century and the historical(1961−2014) observed temperature showed the spatial distribution characteristics that the northwest was greater than southeast of this region, and the high latitude and high altitude areas were greater than the low latitude and low altitude areas. With the passage of time, at the end of 21st century, the temperature anomaly in the same region was significantly higher under high forcing scenarios than that in low forcing scenarios.
    Related Articles | Metrics | Comments0
    A Comprehensive Drought Evaluation Model in Beijing-Tianjin-Hebei Region Based on Deep Learning Algorithm
    HU Xiao-feng, WANG Dong-li, ZHAO An-zhou, LIU Xian-feng, WANG Jin-jie
    Chinese Journal of Agrometeorology    2021, 42 (09): 775-787.   DOI: 10.3969/j.issn.1000-6362.2021.09.005
    Abstract320)      PDF(pc) (4631KB)(519)       Save

    Drought is the most common natural hazard in the Beijing-Tianjin-Hebei region. Timely and accurate drought evaluation is crucial for socio-economic development and agricultural production. Unilateral factors such as vegetation or precipitation are usually only considered in current drought assessment, which have some limitations in actual drought evaluation. In this study, multiple drought-causing factors such as precipitation, temperature, soil and terrain were considered comprehensively. Land surface temperature (LST), normalized difference vegetation index (NDVI), precipitation and other multi-source data from 2007 to 2017 were used to construct a comprehensive drought evaluation model with standardized precipitation evapotranspiration index (SPEI) as the target value under Tensorflow frame in the Beijing-Tianjin-Hebei region, Chinese main grain production base. Determination coefficient (R2) and root mean square error (RMSE) were used to evaluate model accuracy. The station standardized precipitation index (SPI), soil relative moisture data and meteorological disaster data for the Beijing-Tianjin-Hebei region in 2016 were used to validate the accuracy of model in time and space. The results showed that model in training and test sets had different performance in various months, with R2 both greater than 0.5 and RMSE less than 0.55. Comprehensive drought evaluation model had the best performance in November. Comprehensive drought index (CDI) output from the model was close to SPI and SPEI at Miyun station, and the change trend was basically consistent. The correlation coefficients between the CDI of the model and SPI, relative soil moisture at a 10cm depth were greater than 0.7 and 0.4 respectively. Both of them passed 0.01 significance level test. Spatially, compared with SPEI, the results of drought events in Beijing-Tianjin-Hebei region from March to July in 2016 calculated by CDI were more consistent with actual situation, which indicated that the comprehensive evaluation model was applicable for drought monitoring in Beijing-Tianjin-Hebei region. 

    Related Articles | Metrics | Comments0
    Mechanism on the Formation of Climate Change Impact Chain and Its Responses
    PAN Zhi-hua, HUANG Na, ZHENG Da-wei
    Chinese Journal of Agrometeorology    2021, 42 (12): 985-997.   DOI: 10.3969/j.issn.1000-6362.2021.12.001
    Abstract316)      PDF(pc) (535KB)(373)       Save
    Once climate change brings various stresses and disturbances on the receptor system, the receptor system will transfer these stresses and disturbances to other systems through its connection with them, resulting in the continuous extension of climate change effects in time and space, forming a complex climate change impact chain. At present, studies on the impacts of climate change mostly focus on the direct impacts, while the indirect impacts are rarely considered. The incomplete understanding of the impact transmission of climate change is one of the main constraints in addressing climate change. It is of great significance to explore the formation mechanism of the impact chain of climate change. This research analyzed the characteristics of climate change impacts, explored the formation mechanism of climate change impact chains, defined the connotation and classification of climate change impact chains, clarified the impact levels of climate change, and proposed ways to cope with climate change impact chains. The results showed that the impacts of climate change were extensive, different, persistent, transferable, transformable, and sometime sudden. When climate change acted on the direct receptors, the impacts of climate change would be transmitted along the food chain in the ecosystem, along the industrial chain in the economic system, and along the social relationship chain in the social system. The transmission of impact chain took the form of material flow, energy flow and information flow. The impacts of climate change always rose from low to high levels, along changes in resource endowments to natural production, economic production systems and social systems. It is believed that the effective control or cutting off of the transmission of adverse impacts of climate change can effectively reduce the impact risks and losses of climate change. The impact chain of climate change and its formation mechanism provide ideas and approaches for people to deal with climate change comprehensively.
    Related Articles | Metrics | Comments0
    Effects of Low Temperature Stress during the Anther Differentiation Period on Leaf Anatomical Structure and Photosynthetic Characteristics of Wheat
    LIU Lv-zhou, ZHANG Yan, ZHANG Lin, CAI Hong-mei, YU Min, WEI Feng-zhen, CHEN Xiang, LI Jin-cai
    Chinese Journal of Agrometeorology    2023, 44 (01): 58-70.   DOI: 10.3969/j.issn.1000-6362.2023.01.006
    Abstract315)      PDF(pc) (4230KB)(145)       Save
    Two wheat varieties differing in spring cold-sensitivity Yannong 19 (YN19) and Xinmai 26(XM26) were used as experimental materials. During the anther differentiation period, two temperature treatments of 4℃ and−4℃were set up in the smart climate box. At the same time, the average temperature of the ambient temperature was 10℃ as the control (CK). After the treatment, effects of low temperature stress during the anther differentiation period on leaf anatomical structure and photosynthetic characteristics of wheat were observed. The results showed that: (1) low temperature stress during the anther differentiation period significantly increased the SOD, POD, CAT enzyme activities and MDA content of functional leaves of the two wheat varieties, and the CAT enzyme activity increased the most. Compared with CK, XM26 increased by 48.68% and 87.55% at 4℃ and −4℃, while YN19 increased by 76.59% and 110.39%, respectively. Overall, the increase in antioxidant enzyme activity of YN19 was greater than that of XM26, and it had a strong ability to eliminate reactive oxygen species. (2) Low temperature stress destroys the chloroplast structure of wheat functional leaves. Compared with CK, the chloroplast number and chloroplast area of XM264℃ and −4℃ decreased by 12.43%, 24.97% and 57.68%, 5.88%, respectively, and YN19 decreased by 14.56%, 16.69% and 25.88%, 61.90%, respectively. With the decrease of temperature (4℃→−4℃), the number and thickness of grana lamellae in the leaves of the two tested wheat varieties also decreased significantly, the cell membrane was damaged to different degrees, and the grana lamella began to disintegrate. (3) With the deepening of low temperature stress, the contents of chlorophyll a (Chla), chlorophyll b (Chlb) and Chla+Chlb of the two tested wheat varieties decreased, and XM26 decreased by 26.97%, 27.39%, 31.78% compared with CK under −4℃ low temperature stress, while YN19 decreased by 34.36%, 23.81%, and 26.91%, respectively, indicating that low temperature stress destroyed the internal structure of leaves and reduces chlorophyll content. (4) Compared with CK, the net photosynthetic rate (Pn) of functional leaves of wheat under low temperature stress decreased gradually, and the intercellular CO2 concentration (Ci) increased gradually. The Pn of XM26 decreased by 31.84% and 92.04%, while that of YN19 decreased by 17.42% and 89.62% on the day of low temperature stress at 4℃ and −4℃, respectively, indicating that the decrease of Pn in wheat leaves was mainly caused by non-stomatal limiting factors. To sum up, the low temperature stress during the anther differentiation period will damage the wheat leaf function and reduce its photosynthetic capacity. Therefore, the cultivation and management measures should be strengthened in field production to improve the cold resistance of wheat and reduce the damage caused by late spring cold to wheat.
    Related Articles | Metrics | Comments0
    Effects of Short-term High Temperature on Spikelet Opening Dynamics and Yield of Different Rice Varieties during Flowering Period
    XU Peng, HE Yi-zhe, HUANG Ya-ru, WANG Hui, YOU Cui-cui, HE Hai-bing, KE Jian, WU Li-quan
    Chinese Journal of Agrometeorology    2023, 44 (01): 25-35.   DOI: 10.3969/j.issn.1000-6362.2023.01.003
    Abstract312)      PDF(pc) (630KB)(252)       Save
    Under the background of global warming, high temperature weather occurs frequently in the Yangtze River Basin, which has become the primary problem seriously affecting the safe production of rice in this region. In order to clarify the effects of short-term high temperature on the spikelet opening dynamics and yield of different rice varieties during flowering period, the heat-resistant rice variety N22 and heat-sensitive rice variety YR343 were used as experimental materials and planted in pots. From the day of heading and blooming, the artificial climate chamber was used for temperature treatment, with 32℃/25℃ (day/night) as the control, 38℃/30℃ as the high temperature treatment, and continuous treatment for 7 days. Samples were taken on the 1st, 3rd, 5th, and 7th days of treatment to study the effects of high temperature stress on the opening dynamics, physiological characteristics of spikelets and yield of rice in different days of flowering. The results showed that: (1) the yield and seed setting rate of rice showed a decreasing trend after high temperature stress, and the reduction range was related to the duration of high temperature. After 7 days of high temperature treatment, the yield and seed setting rate of N22 decreased by 49.1% and 37.4%, and that of YR343 decreased by 85.1% and 65.3%, respectively. (2) The anther dehiscence rate and pollen activity of rice decreased to varying degrees after high temperature stress during flowering, and the longer the high temperature lasted, the greater the decrease. (3) The total amount of spikelet opening of rice was significantly reduced under high temperature stress, in N22 and YR343, by 33.3% and 65.5%, respectively. The flowering peak and peak appearance time of rice changed under high temperature stress. Compared with the control, the flowering peak ratio of N22 and YR343 decreased by 0.5% and 2.8%, respectively, and the flowering peak of N22 appeared 1 h earlier, while that of YR343 did not change. And under the high temperature coercion, YR343 has a shortened flowering period. (4) The changes of the physiological indices of rice spikelets under high temperature stress were as follows: the contents of soluble protein, soluble sugar and proline generally decreased; the contents of malondialdehyde and hydrogen peroxide increased; the activity of antioxidant enzymes showed a trend of first increasing and then decreasing. In summary, the low seed setting rate is the main reason for the reduction in rice yield. High temperature stress leads to the reduction of rice yield, mainly by changing the spikelet opening dynamics and its physiological characteristics, reducing the anther dehiscence rate and pollen activity, and thus reducing the seed setting rate.
    Related Articles | Metrics | Comments0
    Analysis of Agroclimatic Characteristics of Wine Grape in Ili Region
    YANG Fan, LIU Yuan, LIU Bu-chun, YANG Xing-yuan, CUI Cheng, CHEN Yu-bao
    Chinese Journal of Agrometeorology    2023, 44 (04): 261-273.   DOI: 10.3969/j.issn.1000-6362.2023.04.001
    Abstract309)      PDF(pc) (2707KB)(215)       Save
    Based on the daily climate and wine grape growth data of 10 meteorological stations in wine grape cultivable area of Ili Kazak Autonomous Prefecture, Xinjiang Uygur Autonomous Region, spatial distribution and variation of wine grape climate resources and agricultural meteorological disasters in the study area from 1961 to 2020 were analyzed. Those were calculated by M-K test, trend test and other statistical methods, combined with ArcGIS spatial expression. It can be provided a scientific basis for more efficient and reasonable use of local snow resources to alleviate drought and freezing injury and optimize wine grape overwintering methods. The results showed that: (1) the light and heat resources in Ili region were rich except Zhaosu and Nilke, while the spatial distribution of precipitation was uneven and less than 455mm. The precipitation in the whole area increased by 5.1mm·10y−1 from 1961 to 2020, which generally met the climatic requirements for the wine grapes growth and development. The snowfall during the wine grapes overwinter period in the whole region increased by 7.4mm·10y−1, while the probability of snow cover in 0−10cm was greater than 90%. (2) The frequency and intensity of frost damage decreased during the overwintering period in the whole region from 1961 to 2020, while drought was more serious in July and September in the potential growing season.
    Related Articles | Metrics | Comments0
    Climatic Suitability and Potential Analysis of Apple Planting in Northern Expansion Area of Shaanxi Province
    LIANG Yi, QU Zhen-jiang, LU Cheng, ZHANG Li, LIU Lu, WANG Jing-hong
    Chinese Journal of Agrometeorology    2023, 44 (05): 347-360.   DOI: 10.3969/j.issn.1000-6362.2023.05.001
    Abstract308)      PDF(pc) (5232KB)(230)       Save
    The purpose of this study is to clarify the fine distribution of climatic suitable area for apple planting in the northern extension area of Shaanxi province in the new climate period (1991−2020), and reveal the development potential of apple planting in this region. Based on the meteorological observation data, the digital elevation model data and the arable land confirmation data,the requirements for the climatic suitability and mountainous site conditions of apple planting in the northern expansion area of Shaanxi province were comprehensively analyzed. Seven factors, including annual average temperature, annual precipitation, average relative humidity from June to August, average minimum temperature from June to August, average temperature in January, aspect and slope, were selected as zoning indexes to divide the climatic suitability of apple planting in the research area. The multiple regression method was used to simulate and calculate the spatialization of every climatic factor. Then the suitability quantitative evaluation model of each single factor was constructed by fuzzy set linear membership function method. The climatic suitability regionalization of apple planting in the northern extension area of Shaanxi was developed by weighted comprehensive evaluation and set optimization methods. Finally, the distribution of dry land and irrigation area in the suitable planting area for apple of each district was extracted by using the arable land confirmation data. The results showed:(1) the northern boundary of the suitable area for apple planting in Shaanxi was from Wuqi county, the middle and south of Jingbian county to the northeast through the south of Hengshan county, Mizhi county to the middle and southern of Jiaxian county, whose terrain were mainly hilly and gully area along the sunny gentle slope, with a general altitude of 730-1660m. (2) The field investigation showed that the zoning result was about 80% consistent with the field planting distribution of apple orchard. (3) The refined spatial distribution of climatic appropriate areas for apple by county (district) based on the arable land confirmation data showed that the area of climatic suitable level above for apple could be developed in the northern expansion zone was about 276.9kha, accounting for 24.6% of the available arable land, among which the dry land area accounted for 96.3%, with rain-fed agriculture as mainstay. Compared with the statistical data of apple planting status in each county (district), it could be seen that there was still 4.9−28.5kha development space in most counties (districts) except Shenmu county and Fugu county in Yulin city, and Wuqi county in Yan’an city. The potential planting area of climatic suitable for apple in Zhidan county in Yan’an city had tended to be saturated. The results can provide reference for optimizing regional layout of apple industry under the background of climate change.
    Related Articles | Metrics | Comments0