Top Read Articles

    Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Influence Report of Weather on Agricultural Production in Summer 2022
    ZHAO Xiao-feng, HAN Li-juan, LI Sen, HE Liang, LIU Wei
    Chinese Journal of Agrometeorology    2022, 43 (11): 945-948.   DOI: 10.3969/j.issn.1000-6362.2022.11.008
    Abstract569)      PDF(pc) (359KB)(177)       Save
    In the summer of 2022 (June-August), the national average air temperature was 22.3℃, which was 1.1℃ higher than the same period of the normal year(1991−2020). There were sufficient thermal resources in major agricultural areas. The national average high temperature days reached 14.3d, which was 6.3d more than that in the same period of from 1991 to 2020, and had been the maximum value since 1961. The national average precipitation was only 290.6mm, being the second smallest in the same period since 1961. The national average sunshine duration was 677.4h, which was close to the same period in the normal year and 53.7h more than that in 2021. The weather in most summer-harvesting areas was fine, which was conducive to the full maturity and quality improvement in grain and oil crops. There were two obvious precipitation events in late June, which effectively alleviated the previous drought in the northern summer-sowing areas. However, the deviation of soil moisture was not conducive to timely summer planting in some areas in Shaanxi and Gansu. Most of the agricultural areas were exposed to sufficient light and heat, with no occurrence of obvious cloudy and rainy weather. There was abundant precipitation and suitable soil moisture in the northern agricultural areas, which was in favor of the growth, development and yield formation for local crops such as corn and soybeans. The continuous high temperature and lack of rain in the southern agricultural areas led to the development of agricultural drought and heat stress for crops such as rice and maize. The meteorological conditions limited the stable growth of crops, economic trees and fruits. Superimposed precipitation occurred in Liaoning and Shandong, resulting in waterlogging in some lowland areas. Moreover, periodical low temperature in early June and late August affected the growth, development and grain filling of -harvesting crops in the Northeast.
    Related Articles | Metrics | Comments0
    Current Situation and Research Prospect of Agrometeorology in the New Stage
    PAN Zhi-hua
    Chinese Journal of Agrometeorology    2023, 44 (04): 327-332.   DOI: 10.3969/j.issn.1000-6362.2023.04.007
    Abstract442)      PDF(pc) (285KB)(359)       Save
    At present, China has been entering a new stage of building an agricultural power, and agrometeorology is facing unprecedented challenges and opportunities for development. In view of the new situation of smart agricultural production, food security, green development and climate change, it is urgent for agrometeorology to establish the quantitative relationship between climate factors and agricultural production, make scientific and rational use of climate resources, and improve the utilization rate of climate resources. The major tasks of agrometeorology are to deepen the research content, expand the research field and innovate the theory and method, and the key research directions include agrometeorological basis, climate change adaptation, greenhouse gas emission reduction, efficient utilization of agro-climatic resources, agro-microclimate regulation, and climate-smart agriculture. Agrometeorology needs to accelerate its development and stay ahead of other basic agricultural disciplines.
    Related Articles | Metrics | Comments0
    Effects of Duck Manure Replacing Chemical Fertilizer on Soil Nutrient Characteristics and Pear Quality in Pear Planting
    XUE Peng-ying, CHEN Yong-xing, ZHU Zhi-ping, HAO Dong-min, SONG Man
    Chinese Journal of Agrometeorology    2022, 43 (12): 1015-1024.   DOI: 10.3969/j.issn.1000-6362.2022.12.006
    Abstract425)      PDF(pc) (590KB)(103)       Save
    The purpose of this study was to explore the effects of duck manure application on soil environmental quality and pear quality and to promote the scientific application of duck manure to partially replace chemical fertilizers in pear planting. Under the condition of equal nitrogen substitution, the duck manure alternative fertilizer program in this study was divided into five groups including the control group (CK), 30% (DM1), 40% (DM2), 50% (DM3), and 60% (DM4). The duck manure was applied to the pear tree soil in April and July. Soil and pear samples were collected in October. The soil environmental quality (soil pH, soil nutrients, heavy metals, antibiotics) and pear quality parameters (soluble solids, soluble sugars, vitamin C) were also analyzed. The results showed that all the duck manure replacement treatments (DM1-DM4) could significantly increase the soil pH (6%−21%) compared with the control group, and the organic matter of deeper soil (40−60cm) was improved. The most significant effect on increasing the content of available phosphorus and available potassium in the soil was also found in the DM3 group. Fortunately, the contents of heavy metals in different soil layers of each treatment fully meet the requirements of pollution-free and green food producing areas for soil environment. The results also indicated that the application of duck manure improved the pear quality, and the soluble solids, soluble sugars, and vitamin C of pear were increased by 5.21%−17.44%, 2.50%−8.45%, and 0.39%−11.01%, respectively. The results showed that 30% duck manure replacing had the best effect on improving pear quality, while 50% duck manure replacing had the best effect on improving soil environment quality.
    Related Articles | Metrics | Comments0
    Spatiotemporal Patterns of Seasonal Mean Temperature Variations in China During 2001−2100
    FU Da-rong, CHEN Xiao-die, LIU Yi-ting, LIU Li, PENG Shou-zhang
    Chinese Journal of Agrometeorology    2022, 43 (09): 681-691.   DOI: 10.3969/j.issn.1000-6362.2022.09.001
    Abstract332)      PDF(pc) (5662KB)(236)       Save
    Based on the 1-km resolution long time series temperature data set, the spatial and temporal patterns of the magnitude and trend of the four-season mean temperature changes in the historical period (2001−2020), and in the future period (2021−2100) under the low forcing scenario (SSP119), medium forcing scenario (SSP245) and high forcing scenario (SSP585) are analyzed using the distance level method, Mann-Kendall trend test method and Sen's slope estimation method, with a view to providing a basis for developing detailed regional adaptation strategies in the context of climate warming. The results show that: (1) compared with the historical period, the average temperature of the four seasons in the future will increase in general under the three scenarios, and the area with the largest increase in summer is 66.70% under SSP119, 37.37% and 99.06% under SSP245 and SSP585, respectively. At the same time, the overall variation range of seasonal mean temperature under the three SSP scenarios is significantly different, which is moderated under SSP119, followed by SSP245, and the largest increase range under SSP585. (2) In the historical period, compared with other seasons, the significant rise in mean temperature in spring had the fastest rate (0.68±0.24℃∙10y−1) and the largest area share (14.44%), mainly distributed in North China, Yunnan, Guizhou, Jiangsu and Zhejiang provinces. (3) In the future period, the regional seasonal mean temperature in China shows an overall rising trend with significant spatial differences; among them, under the SSP119 scenario, the regions with significantly rising mean temperature in spring and winter are mainly concentrated in southern China and the local area of the Qinghai-Tibet Plateau, accounting for 29.03% and 25.58% of the area, respectively; under the SSP245 and SSP585 scenarios, the seasonal mean temperature in all regions of China shows a significant upward trend; under the SSP585 scenario, the seasonal mean temperature in the north increases at a faster rate than that in the south, and the national region has the fastest significant rate of increase in winter (0.66±0.09℃∙10y−1).
    Related Articles | Metrics | Comments0
    Evaluation and Projection of Temperature in Southwestern China by CMIP6 Models
    JIN Cheng-xiu, JIANG Chao, ZHANG Xi-yue
    Chinese Journal of Agrometeorology    2022, 43 (08): 597-611.   DOI: 10.3969/j.issn.1000-6362.2022.08.001
    Abstract325)      PDF(pc) (5094KB)(280)       Save
    Using on the CN05.1 monthly average temperature observation data set from 1961 to 2014 and the output data from 19 global climate models from Coupled Model Intercomparison Project Phase 6 (CMIP6), the simulation ability of CMIP6 models on the climatology spatial distribution and interannual variability of temperature in Southwestern China was systematically evaluated by means of Taylor diagram, Taylor index and interannual variability skill score. The variation characteristics of future temperature in this area were predicted under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios. The results showed that: (1) compared with other seasons, most CMIP6 models had the best performance in simulating the spatial distribution of autumn temperature climatology during 1961-2014; and CMIP6 models underestimated the interannual variability of seasonal and annual average temperature. Among the 19 models, the best models simulated the temperature in Southwestern China were ACCESS-CM2, CMCC-CM2-SR5 and CMCC-ESM5. (2) The multi-model ensemble mean(MME) of 3 best-fit models simulated the climatology spatial distribution and interannual variability of average temperature better than the MME of 19 models. (3) Compared with the multi-year average temperature observed in the same period during 1961−2014, the seasonal and annual average temperature in Southwestern China showed an upward trend in the future under the four climatic scenarios, seasonal and annual average temeprature increased by 0.94−3.48℃. Under the four scenarios, the increase of average temperature in summer was the largest(2.17−3.48℃) and the interannual fluctuation range was the smallest, the increase of temperature in winter was the smallest(0.94−2.24℃) and the interannual fluctuation range was the largest. (4) In the early of 21st century, there was little difference in the increase of seasonal and annual average temperature under 4 scenarios. During the middle of the 21st century, the upward trend of seasonal and annual average temperature in high radiation forcing scenarios was gradually larger than that in low radiation forcing scenarios. (5) Under the four scenarios, the anomaly values of multi-year average temperature at the early (2015−2034), middle (2045−2064) and end (2081−2100) period of 21st century and the historical(1961−2014) observed temperature showed the spatial distribution characteristics that the northwest was greater than southeast of this region, and the high latitude and high altitude areas were greater than the low latitude and low altitude areas. With the passage of time, at the end of 21st century, the temperature anomaly in the same region was significantly higher under high forcing scenarios than that in low forcing scenarios.
    Related Articles | Metrics | Comments0
    Effects of Low Temperature Stress during the Anther Differentiation Period on Leaf Anatomical Structure and Photosynthetic Characteristics of Wheat
    LIU Lv-zhou, ZHANG Yan, ZHANG Lin, CAI Hong-mei, YU Min, WEI Feng-zhen, CHEN Xiang, LI Jin-cai
    Chinese Journal of Agrometeorology    2023, 44 (01): 58-70.   DOI: 10.3969/j.issn.1000-6362.2023.01.006
    Abstract315)      PDF(pc) (4230KB)(145)       Save
    Two wheat varieties differing in spring cold-sensitivity Yannong 19 (YN19) and Xinmai 26(XM26) were used as experimental materials. During the anther differentiation period, two temperature treatments of 4℃ and−4℃were set up in the smart climate box. At the same time, the average temperature of the ambient temperature was 10℃ as the control (CK). After the treatment, effects of low temperature stress during the anther differentiation period on leaf anatomical structure and photosynthetic characteristics of wheat were observed. The results showed that: (1) low temperature stress during the anther differentiation period significantly increased the SOD, POD, CAT enzyme activities and MDA content of functional leaves of the two wheat varieties, and the CAT enzyme activity increased the most. Compared with CK, XM26 increased by 48.68% and 87.55% at 4℃ and −4℃, while YN19 increased by 76.59% and 110.39%, respectively. Overall, the increase in antioxidant enzyme activity of YN19 was greater than that of XM26, and it had a strong ability to eliminate reactive oxygen species. (2) Low temperature stress destroys the chloroplast structure of wheat functional leaves. Compared with CK, the chloroplast number and chloroplast area of XM264℃ and −4℃ decreased by 12.43%, 24.97% and 57.68%, 5.88%, respectively, and YN19 decreased by 14.56%, 16.69% and 25.88%, 61.90%, respectively. With the decrease of temperature (4℃→−4℃), the number and thickness of grana lamellae in the leaves of the two tested wheat varieties also decreased significantly, the cell membrane was damaged to different degrees, and the grana lamella began to disintegrate. (3) With the deepening of low temperature stress, the contents of chlorophyll a (Chla), chlorophyll b (Chlb) and Chla+Chlb of the two tested wheat varieties decreased, and XM26 decreased by 26.97%, 27.39%, 31.78% compared with CK under −4℃ low temperature stress, while YN19 decreased by 34.36%, 23.81%, and 26.91%, respectively, indicating that low temperature stress destroyed the internal structure of leaves and reduces chlorophyll content. (4) Compared with CK, the net photosynthetic rate (Pn) of functional leaves of wheat under low temperature stress decreased gradually, and the intercellular CO2 concentration (Ci) increased gradually. The Pn of XM26 decreased by 31.84% and 92.04%, while that of YN19 decreased by 17.42% and 89.62% on the day of low temperature stress at 4℃ and −4℃, respectively, indicating that the decrease of Pn in wheat leaves was mainly caused by non-stomatal limiting factors. To sum up, the low temperature stress during the anther differentiation period will damage the wheat leaf function and reduce its photosynthetic capacity. Therefore, the cultivation and management measures should be strengthened in field production to improve the cold resistance of wheat and reduce the damage caused by late spring cold to wheat.
    Related Articles | Metrics | Comments0
    Effects of Short-term High Temperature on Spikelet Opening Dynamics and Yield of Different Rice Varieties during Flowering Period
    XU Peng, HE Yi-zhe, HUANG Ya-ru, WANG Hui, YOU Cui-cui, HE Hai-bing, KE Jian, WU Li-quan
    Chinese Journal of Agrometeorology    2023, 44 (01): 25-35.   DOI: 10.3969/j.issn.1000-6362.2023.01.003
    Abstract312)      PDF(pc) (630KB)(253)       Save
    Under the background of global warming, high temperature weather occurs frequently in the Yangtze River Basin, which has become the primary problem seriously affecting the safe production of rice in this region. In order to clarify the effects of short-term high temperature on the spikelet opening dynamics and yield of different rice varieties during flowering period, the heat-resistant rice variety N22 and heat-sensitive rice variety YR343 were used as experimental materials and planted in pots. From the day of heading and blooming, the artificial climate chamber was used for temperature treatment, with 32℃/25℃ (day/night) as the control, 38℃/30℃ as the high temperature treatment, and continuous treatment for 7 days. Samples were taken on the 1st, 3rd, 5th, and 7th days of treatment to study the effects of high temperature stress on the opening dynamics, physiological characteristics of spikelets and yield of rice in different days of flowering. The results showed that: (1) the yield and seed setting rate of rice showed a decreasing trend after high temperature stress, and the reduction range was related to the duration of high temperature. After 7 days of high temperature treatment, the yield and seed setting rate of N22 decreased by 49.1% and 37.4%, and that of YR343 decreased by 85.1% and 65.3%, respectively. (2) The anther dehiscence rate and pollen activity of rice decreased to varying degrees after high temperature stress during flowering, and the longer the high temperature lasted, the greater the decrease. (3) The total amount of spikelet opening of rice was significantly reduced under high temperature stress, in N22 and YR343, by 33.3% and 65.5%, respectively. The flowering peak and peak appearance time of rice changed under high temperature stress. Compared with the control, the flowering peak ratio of N22 and YR343 decreased by 0.5% and 2.8%, respectively, and the flowering peak of N22 appeared 1 h earlier, while that of YR343 did not change. And under the high temperature coercion, YR343 has a shortened flowering period. (4) The changes of the physiological indices of rice spikelets under high temperature stress were as follows: the contents of soluble protein, soluble sugar and proline generally decreased; the contents of malondialdehyde and hydrogen peroxide increased; the activity of antioxidant enzymes showed a trend of first increasing and then decreasing. In summary, the low seed setting rate is the main reason for the reduction in rice yield. High temperature stress leads to the reduction of rice yield, mainly by changing the spikelet opening dynamics and its physiological characteristics, reducing the anther dehiscence rate and pollen activity, and thus reducing the seed setting rate.
    Related Articles | Metrics | Comments0
    Analysis of Agroclimatic Characteristics of Wine Grape in Ili Region
    YANG Fan, LIU Yuan, LIU Bu-chun, YANG Xing-yuan, CUI Cheng, CHEN Yu-bao
    Chinese Journal of Agrometeorology    2023, 44 (04): 261-273.   DOI: 10.3969/j.issn.1000-6362.2023.04.001
    Abstract309)      PDF(pc) (2707KB)(215)       Save
    Based on the daily climate and wine grape growth data of 10 meteorological stations in wine grape cultivable area of Ili Kazak Autonomous Prefecture, Xinjiang Uygur Autonomous Region, spatial distribution and variation of wine grape climate resources and agricultural meteorological disasters in the study area from 1961 to 2020 were analyzed. Those were calculated by M-K test, trend test and other statistical methods, combined with ArcGIS spatial expression. It can be provided a scientific basis for more efficient and reasonable use of local snow resources to alleviate drought and freezing injury and optimize wine grape overwintering methods. The results showed that: (1) the light and heat resources in Ili region were rich except Zhaosu and Nilke, while the spatial distribution of precipitation was uneven and less than 455mm. The precipitation in the whole area increased by 5.1mm·10y−1 from 1961 to 2020, which generally met the climatic requirements for the wine grapes growth and development. The snowfall during the wine grapes overwinter period in the whole region increased by 7.4mm·10y−1, while the probability of snow cover in 0−10cm was greater than 90%. (2) The frequency and intensity of frost damage decreased during the overwintering period in the whole region from 1961 to 2020, while drought was more serious in July and September in the potential growing season.
    Related Articles | Metrics | Comments0
    Climatic Suitability and Potential Analysis of Apple Planting in Northern Expansion Area of Shaanxi Province
    LIANG Yi, QU Zhen-jiang, LU Cheng, ZHANG Li, LIU Lu, WANG Jing-hong
    Chinese Journal of Agrometeorology    2023, 44 (05): 347-360.   DOI: 10.3969/j.issn.1000-6362.2023.05.001
    Abstract308)      PDF(pc) (5232KB)(230)       Save
    The purpose of this study is to clarify the fine distribution of climatic suitable area for apple planting in the northern extension area of Shaanxi province in the new climate period (1991−2020), and reveal the development potential of apple planting in this region. Based on the meteorological observation data, the digital elevation model data and the arable land confirmation data,the requirements for the climatic suitability and mountainous site conditions of apple planting in the northern expansion area of Shaanxi province were comprehensively analyzed. Seven factors, including annual average temperature, annual precipitation, average relative humidity from June to August, average minimum temperature from June to August, average temperature in January, aspect and slope, were selected as zoning indexes to divide the climatic suitability of apple planting in the research area. The multiple regression method was used to simulate and calculate the spatialization of every climatic factor. Then the suitability quantitative evaluation model of each single factor was constructed by fuzzy set linear membership function method. The climatic suitability regionalization of apple planting in the northern extension area of Shaanxi was developed by weighted comprehensive evaluation and set optimization methods. Finally, the distribution of dry land and irrigation area in the suitable planting area for apple of each district was extracted by using the arable land confirmation data. The results showed:(1) the northern boundary of the suitable area for apple planting in Shaanxi was from Wuqi county, the middle and south of Jingbian county to the northeast through the south of Hengshan county, Mizhi county to the middle and southern of Jiaxian county, whose terrain were mainly hilly and gully area along the sunny gentle slope, with a general altitude of 730-1660m. (2) The field investigation showed that the zoning result was about 80% consistent with the field planting distribution of apple orchard. (3) The refined spatial distribution of climatic appropriate areas for apple by county (district) based on the arable land confirmation data showed that the area of climatic suitable level above for apple could be developed in the northern expansion zone was about 276.9kha, accounting for 24.6% of the available arable land, among which the dry land area accounted for 96.3%, with rain-fed agriculture as mainstay. Compared with the statistical data of apple planting status in each county (district), it could be seen that there was still 4.9−28.5kha development space in most counties (districts) except Shenmu county and Fugu county in Yulin city, and Wuqi county in Yan’an city. The potential planting area of climatic suitable for apple in Zhidan county in Yan’an city had tended to be saturated. The results can provide reference for optimizing regional layout of apple industry under the background of climate change.
    Related Articles | Metrics | Comments0
    Application Effectiveness and Problems of Biodegradable Mulch
    GUO Bo, YANG Zhen-xing, HE Wen-qing, LIU Jia-lei
    Chinese Journal of Agrometeorology    2023, 44 (11): 977-994.   DOI: 10.3969/j.issn.1000-6362.2023.11.001
    Abstract299)      PDF(pc) (625KB)(329)       Save
    Mulch film mulching cultivation technology not only increases agricultural production and income, but also causes serious pollution problems because of the long-term use of polyolefin mulch film and low recovery rates. In areas with serious mulch film residue, the soil structure is seriously damaged, the quality of cultivated land is reduced, agricultural operations are blocked, and crop emergence, nutrient absorption and root growth and development are restricted. Biodegradable mulch film can be degraded by microorganisms such as bacteria, fungi and actinomycetes in the natural environment, and finally decomposed into CO2 and H2O, which not only has no pollution to soil but also promotes the growth and development of crops, and has become one of the effective ways to solve the problem of white pollution. With the deepening of the research on biodegradable mulch film, people found that biodegradable mulch film has different effects on soil environment and crop yield, and these effects are quite different in different regions and crops. It is not possible to directly draw the conclusion that biodegradable mulch film is better than PE mulch film through one or several experiments. In this paper, the effects of biodegradable mulch film on soil environment, crop growth and yield in recent years were summarized, and the experimental effects of biodegradable mulch film (BM) and mulch mulch film (PE) were compared, and their advantages and disadvantages were analyzed, and suggestions were put forward to improve the performance of biodegradable mulch film, so as to continuously improve the performance of biodegradable mulch film and realize the sustainable development of agricultural science and technology. Summary and analysis show that: (1) Biodegradable mulch film can increase soil temperature and humidity, meet the needs of crops in the early stage of growth, accelerate the emergence of seedlings, shorten the growth cycle, and have beneficial effects on soil organic matter, available nitrogen and soil enzyme activity, and improve soil nutrient content. In terms of microorganisms, biodegradable mulch film can promote the growth of soil microbial content and soil respiration rate. At the same time, biodegradable mulch film has better weed control ability than PE mulch film, among which black biodegradable mulch film has the best effect, which can effectively reduce the number of weeds in the field and ensure the supply of nutrients needed by crops. (2) In terms of crops, biodegradable mulch film can promote corn growth, shorten the growth period and increase the yield in the early and middle stages of corn growth. There was no significant difference between the yield of cotton seed cotton covered with biodegradable mulch film and PE mulch film, and the yield of cotton seed cotton covered with mulch film is significantly higher than that of bare land. The potato treated with biodegradable mulch film germinated faster in the early growth stage because of the increase of soil temperature, which significantly shortened the growth cycle and brought it to market earlier, and significantly increased the yield compared with PE mulch film and bare land, among which the black biodegradable mulch film had the most obvious effect. For millet crops, there was no significant difference in yield between the treatment with biodegradable mulch film and the treatment with PE mulch film, and the yield of the treatment with mulch film was significantly improved compared with the treatment with bare land. For vegetable crops such as tomato, eggplant and beet with short growth cycle, biodegradable mulch film can play the role of heat preservation and moisture increase for a long time, and promote the rapid growth of crops. The final yield is not significantly different from that of PE mulch film mulching treatment, even slightly improved, and significantly improved compared with bare land treatment. (3) Put forward the influence of different components of biodegradable mulch film on soil and crops, controllable degradation and cost problems, such as the difficult control of degradation speed, environmental problems caused by incomplete degradation of biodegradable mulch film, low technical maturity and high price, and put forward suggestions for future research and development, so as to modify and innovate biodegradable raw materials, reduce costs and regulate the degradation mechanism of biodegradable mulch film. Strengthen the research on raw materials, formula and production technology of biodegradable mulch film, and develop new biodegradable mulch film with high performance and multifunction, which can meet the regional applicability and crop applicability at the same time, and lay a theoretical foundation for the popularization and application of biodegradable mulch film to more regions and more crop varieties.
    Related Articles | Metrics | Comments0
    Risk Assessment and Premium Rating of Apple Planting in the Base Counties of Shaanxi Province
    YANG Xiao-juan, SUN Jing-bo, SUN Yan-kun, LIU Yuan, BAI Wei, CHEN Di, HAN Rui, LIU Bu-chun
    Chinese Journal of Agrometeorology    2022, 43 (10): 798-809.   DOI: 10.3969/j.issn.1000-6362.2022.10.003
    Abstract299)      PDF(pc) (7242KB)(196)       Save
    Apple is the pillar industry of agricultural characteristic economy in Shaanxi province, but it is facing severe weather disasters during the production process, and the agricultural insurance has not effectively dispersed and transferred these risk. The data of apple planting area, production and yield per unit area of 30 base counties in Shaanxi province from 1981 to 2019 were collected, and the mathematical statistical analysis, yield loss distribution models and optimal distribution model screening were used to evaluate and determine the apple planting risk and its insurance premium rate. The results showed that the apple planting area, production and yield per unit area were increased from 1981 to 2019 in Shaanxi province. Luochuan, Liquan and Chunhua had the highest planting area and production, and the average planting area were 2.12×104ha, 2.01×104ha, and 1.94×104ha, the average production were 33.19×104t, 51.26×104t and 34.28×104t respectively from 1981 to 2019. Liquan and Fufeng were characterized by the relatively higher average yield per hectare with 19.71t and 16.89t respectively from 1981 to 2019. The probability of disaster risk was 29.72%, and the mild, medium, severe and extreme disasters were 17.41%, 7.21%, 2.99% and 2.11% respectively for apple planting in Shaanxi province. Yanchuan and Qianyang were prone to extreme disasters with probability of 24.18% and 20.79%. The probability of severe and extreme disasters was negatively correlated to the planting area with the correlation coefficients of −0.50. The average premium rate of apple planting was 5.23% in Shaanxi province, Yanchuan had the highest premium rate of 18.37%, followed by Qianyang (16.61%). Liquan, Luochuan, and Chunhua, the bigger apple-planting counties, had relatively low premium rates of 7.12%, 7.35%, and 8.63% respectively. Therefore, the high risk areas such as Yanchuan and Qianyang should be cautious in "northward expansion", Luochuan, Liquan and Chunhua could be maintained the planting advantages, and the low risk areas such as Fengxiang could be considered in planting expansion. Increasing apple planting in area with low natural disaster risk could effectively spread the risk in space. The differentiated premium rate according to local conditions should be implemented to ensure the scientificity of premium rate and improve the efficiency of agricultural insurance.
    Related Articles | Metrics | Comments0
    A Review of the Response Characteristics of Soil Respiration to Temperature and Moisture Changes under Global Climate Change
    RAN Man-xue, DING Jun-jun, SUN Dong-bao, GU Feng-xue
    Chinese Journal of Agrometeorology    2024, 45 (01): 1-11.   DOI: 10.3969/j.issn.1000-6362.2024.01.001
    Abstract295)      PDF(pc) (724KB)(322)       Save
    Warming of the climate and changes in precipitation patterns are major manifestations of climate change and abiotic factors affecting soil respiration. Authors presents a systematic analysis of recent research advances on the effects and mechanisms of temperature and moisture on soil respiration. The results show that:(1)there is positive feedback between soil respiration and climate warming, but the temperature adaptation weakens this positive feedback. The effect of temperature on soil respiration varies spatially and temporally due to the different duration of warming and soil carbon storage. The main mechanisms of soil respiration adaptation to temperature include soil microbial adaptation, substrate depletion and soil mineral activation.(2)The effect of precipitation on soil respiration depends on the initial soil water content. When soil water content is lower than the wilting factor, precipitation not only increases soil water content but also promotes soil respiration, reaching a maximum when soil water content is close to the field holding capacity, while soil respiration is inhibited when soil water content reaches saturation value. The main mechanisms by which water affects soil respiration are substitution and blocking effects, substrate supply, microbial stress and root response. (3)The coupling of soil respiration with soil temperature and moisture depends on the ratio of soil water and heat factors. When soil temperature becomes a stress factor, the stimulating effect of increasing soil water content induced by precipitation on soil respiration is suppressed by the negative effect of low temperature. When soil moisture becomes a stress factor, the promoting effect of increased soil temperature due to climate warming on soil respiration is counteracted by the negative impact of drought. The interaction between soil temperature and moisture should be fully considered when studying soil respiration. In order to understand the disturbance factors of soil carbon emissions in terrestrial ecosystems, this paper proposes that future research on the relationship between soil respiration and the environment under climate change. Firstly, strengthen the research on the effects of multi-factor interaction on soil respiration and quantify the soil respiration components. Secondly, continue to pay attention to the characteristics of soil respiration in response to initial soil temperature and temperature fluctuations, and to explore the effects of biodiversity or community structure composition on soil respiration.
    Related Articles | Metrics | Comments0
    Physiological Characteristics of Soybean Leaves at Different Growth Stages
    LIU Jiang, LI Ming-qian, CHANG Jun-fei, CHENG Xi-han, WANG Li-wei, LIU Qing, GAO Xi-ning
    Chinese Journal of Agrometeorology    2022, 43 (08): 622-632.   DOI: 10.3969/j.issn.1000-6362.2022.08.003
    Abstract294)      PDF(pc) (387KB)(216)       Save
    The impacts of drought on agricultural production is a hot topic in agrometeorological research field. Soybean is an important economic crop. Clarifying its responses and adaptation characteristics to drought would be helpful to predict the soybean yields and improve agricultural production technology under global climate change. Therefore, authors conduct water control experiments in the scientific observing and experimental station of crop cultivation in northeast China. The soybean cultivar "Liaodou 15" was used and the drought and rewatering control experiments were conducted. At the flowering and full seed stage, the light drought (relative soil moisture 65%±5%), heavy drought (relative soil moisture 50%±5%), and control (relative soil moisture 80%±5%) treatments were set, respectively and the treatments lasted for 7, 14 and 21 days, respectively. After the droughts, the rewatering treatments were conducted to make the relative soil moisture recover to the control level. When the water stress reached the set levels, the indexes including contents of soluble protein, malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and peroxidase (POD) in the leaves were measured. These indices were also measured on the seventh day after rewatering to clarify the effects of drought and the compensation effects of rewatering. The results showed that the contents of soluble protein, malondialdehyde (MDA) and the activity of peroxidase (POD) increased significantly under light and heavy drought conditions at the flowering stage. The activity of superoxide dismutase (SOD) increased significantly under light drought condition. At the full seed stage, the soluble protein content, MDA content and SOD activity increased, but the POD activity decreased significantly. Rewatering showed compensation effects on soluble protein content, MDA content and SOD activity of soybean leaves, but did not show obvious compensation effect on POD. In conclusion, drought would probably induce peroxidation damage to soybean leaves, represented by the increase of antioxidant enzyme and osmotic regulation substance content. Rewatering can alleviate the peroxidation damage caused by drought, showing different degrees of compensation effect.
    Related Articles | Metrics | Comments0
    Analysis of Spatial-temporal Variation Characteristics of Meteorological Drought in the Hexi Corridor Based on SPEI Index
    XUE Hua-zhu, LI Yang-yang, DONG Guo-tao
    Chinese Journal of Agrometeorology    2022, 43 (11): 923-934.   DOI: 10.3969/j.issn.1000-6362.2022.11.006
    Abstract289)      PDF(pc) (5405KB)(337)       Save
    Using the daily meteorological data of 21 meteorological stations in the Hexi corridor from 1965 to 2017, SPEI at different time scales was calculated based on the Penman-Monteith evapotranspiration model, and the temporal and spatial variation characteristics of meteorological drought in the Hexi corridor, such as the change trend, occurrence frequency and duration, were analyzed. The results showed that: (1) in the past 53 years, the SPEI of the Hexi corridor showed a significant upward trend on the monthly, seasonal and annual scales, which indicated that the drought had a significant weakening trend, but the drought lasted for a long time at individual stations, and the drought lasted for 11 months in 2013 in Wuwei. (2) The Hexi corridor had a trend of wetting in four seasons, and it was significantly wet in winter. Among them, the in spring, summer and autumn presented unstable drought changes, while the sudden change in winter around 1989 indicated the trend from drought to wet. (3) The spatial distribution of drought in the Hexi corridor had obviously regional characteristics. The arid area was mainly concentrated in the northwest, and the humid area was mainly concentrated in the south. (4) The frequency variety law of different grades drought occurance at different time scales was consistent .The frequency of mild to moderate droughts was much higher than that of severe and extreme droughts, and the spatial distribution characteristics of relatively high frequency areas of severe and extreme droughts on the annual and seasonal scales were opposite to those of mild to moderate droughts. Generally, the drought in the Hexi corridor had weakened in the past 53 years, which was beneficial to the local agricultural production and ecological environment. However, the climate change in this region is complex, and local drought needs to be paid attention to.
    Related Articles | Metrics | Comments0
    Application of Deep Learning Technology in Monitoring, Forecasting and Risk Assessment of Agricultural Drought
    HUANG Rui-xi, ZHAO Jun-fang, HUO Zhi-guo, PENG Hui-wen, XIE Hong-fei
    Chinese Journal of Agrometeorology    2023, 44 (10): 943-952.   DOI: 10.3969/j.issn.1000-6362.2023.10.007
    Abstract285)      PDF(pc) (343KB)(370)       Save
    The development of artificial intelligence technology, especially the emergence of deep learning, has promoted new developments of agriculture, and is regarded as a new direction of modern agricultural production. Deep learning has the advantages of strong learning ability, wide coverage, strong adaptability, and great portability. Considering that its development of simulated datasets can solve real-world problems, it is more and more widely used in monitoring, forecasting and risk assessment of agricultural drought. This paper used the method of literature review to summarize the development and application of monitoring, forecasting and risk assessment of agricultural drought, and summarized the principles, advantages and disadvantages of the deep learning model. The practical applications of depth learning model in monitoring, prediction and risk assessment of agricultural drought were systematically summarized. The existing problems of large dataset requirements, long data preprocessing time, narrow predefined category range, and complex remote sensing images were discussed, and the future research directions were prospected. The results showed that in recent years, the technologies of monitoring, prediction and risk assessment of agricultural drought had made important progress. However, due to the nonlinearity of agricultural system and the complexity of disasters, existing technologies were still difficult to meet the needs of actual agricultural production in the new situation in terms of applicable regions, objects and accuracies. The deep learning technology provided a new means for agricultural drought research. However, the deep learning model could not accurately express the specific process and mechanism of crop growth, so coupling of crop growth model with deep learning model could ensure the interpretability of deep learning model. For correcting the prediction sequence, coupling models based on general circulation model and depth learning model could be established to further improve the prediction ability of deep learning model for medium and long-term agricultural drought. Aiming at the problem of limited disaster sample size, strengthening the research on agricultural drought monitoring and evaluation based on migration learning could further improve the precisions in fine monitoring and evaluation of agricultural drought. In view of the fact that the factors affecting agricultural drought formation was characterized by large amount of data, diverse types and nonlinearity, the method of combining deep learning and information fusion was adopted to further improve the accuracies in regional monitoring, prediction and risk assessment of agricultural drought. Therefore, the coupling of deep learning models and crop growth models, agricultural drought prediction by integrating deep learning models and general circulation models, fine monitoring and evaluation of agricultural drought based on deep learning and migration learning, regional monitoring, prediction and risk assessment of agricultural drought based on deep learning and information fusion were considered as the development trends of applicating deep learning technologies in monitoring, prediction and risk assessment of agricultural drought in the future.
    Related Articles | Metrics | Comments0
    Progresses of Crop Model Application and Its Integration with Remote Sensing Technology
    PENG Hui-wen, ZHAO Jun-fang, XIE Hong-fei, FANG Shi-bo
    Chinese Journal of Agrometeorology    2022, 43 (08): 644-656.   DOI: 10.3969/j.issn.1000-6362.2022.08.005
    Abstract277)      PDF(pc) (379KB)(259)       Save
    Crop model remote sensing and play important roles in agricultural production monitoring, evaluation, and future prediction with their unique advantages. The integration technologies of crop model and remote sensing information have obvious application advantages and broad development prospects in monitoring, evaluation and prediction of large-scale and high-precision agricultural production. In order to promote the wider applications of these technologies in crop yield prediction, impact assessments of agrometeorological disaster, and agricultural decision-making to deal with climate change on a regional scale, the method of literature review were adopted in this paper. The development and application of crop models in Europe, United States, Australia and China were systematically summarized. The principle, characteristics and shortcomings of the current mainstream data integration methods were concluded. The practical applications of integration technologies of crop model and remote sensing information were summarized. The existing problems in improving the accuracy of data integration were discussed, and the future research direction was prospected. The results showed that the research and application of crop model and its integration with remote sensing data were extensive and intensive at home and abroad. The assimilation method could effectively improve the simulation accuracies of crop model, providing technical support for crop growth and yield evaluation on regional scales, impacts of climate change on yield, farmland management decision-making, etc. The uncertainties from crop model simulation results and remote sensing inversion data, diversities of data assimilation strategies, and scale effects were the limiting factors to further improve the accuracy and efficiency of integrated systems. Therefore, multi-source fusion of remote sensing data, multivariable cooperation in assimilation process, multi-type coupling of crop models, and high-performance parallel computing of data were the development trends of integrating crop models and remote sensing research in the future.
    Related Articles | Metrics | Comments0
    Analysis of Key Meteorological Factors for Planting Quality Reaching the Standard of Strong Gluten Wheat in Henan Province
    CHENG Lin, SHEN Xiao-qing, HAN Yao-jie, GUO Kang-jun
    Chinese Journal of Agrometeorology    2023, 44 (01): 47-57.   DOI: 10.3969/j.issn.1000-6362.2023.01.005
    Abstract273)      PDF(pc) (1044KB)(142)       Save
    In order to improve the pertinence of meteorological services for high-quality wheat, according to quality measurement data of 6 strong gluten and medium strong gluten wheat varieties, 287 wheat samples from 72 counties in Henan province during 2017−2019, as well as corresponding meteorological and wheat growth period observation data, analytical methods as Person correlation, LSD multi comparison and sensitive coefficient, et al., were used to confirm the key meteorological factors that influence the planting quality of strong gluten wheat in Henan province. The results indicated that, except the south of southern Henan and western Henan area, it was suitable to develop high-quality strong gluten wheat in most areas of Henan province. 6 quality indexes as hardness index, crude protein etc. were affected by the meteorological conditions after jointing to different degrees, among them, air temperature and sunshine hours at jointing-heading and mature-harvest stage had significant effect on most quality indices, air temperature and sunshine hours at flowering-grain filling stage mainly affected hardness index, sedimentation value and water absorption, and at mature-harvest stage, precipitation had negative effect on flour water absorption. Comparing the absolute value of sensitive coefficient SV(i), the sedimentation value was the most sensitive to the average maximum air temperature at jointing-heading stage, SV(i) reached to 0.7954. For different developmental stages, the key meteorological factors for planting quality reaching the standard of strong gluten wheat were as follows: average maximum air temperature, air relative humidity and sunshine hours at jointing-heading stage, air relative humidity at flowering-grain filling stage, and average air temperature at mature- harvest stage. The results explained that the most important meteorological factors effecting the planting quality of strong gluten wheat was air temperature.
    Related Articles | Metrics | Comments0
    Analysis of Annual Compound Events of Heat and Drought in North China Based on Copula Function
    YU Xin, ZHANG Qi, YANG Zai-qiang
    Chinese Journal of Agrometeorology    2023, 44 (08): 695-706.   DOI: 10.3969/j.issn.1000-6362.2023.08.005
    Abstract271)      PDF(pc) (2053KB)(364)       Save
    The Copula function was used to analyze the annual compound events of heat and drought in North China, which can provide reference for agricultural water management and disaster prevention and mitigation in North China. Based on the daily maximum temperature and precipitation data of 36 meteorological stations in North China from 1960 to 2019, the year-by-year heat intensity and drought intensity were identified, the Copula function was introduced to construct a two-dimensional joint cumulative probability distribution function of heat intensity and drought intensity, and the return period of compound events of heat and drought in different grades were analyzed to assess the occurrence characteristics of the compound events. The results showed that when fitting the marginal distributions of annual number of heat days and drought intensity, the GEV function worked best at more stations; the most applied Copula function was the Symmetrised Joe-Clayton function when combining annual number of heat days and drought intensity in two dimensions; compared with high temperature intensity, drought intensity had a greater effect on the magnitude of the joint return period of compound events. North China is more prone to compound events with high heat intensity in the southwest and drought intensity in the south-central part of the country. The leading factors of compound events in North China vary from region to region, and different measures need to be taken to mitigate the damage caused by compound events in different regions.
    Related Articles | Metrics | Comments0
    High Yield and Water Use Efficiency Synergistical Improvement Irrigation Scheme of Winter Wheat in North China Plain Based on Meta-Analysis
    ZHOU Li-tao, SUN Shuang, ZHANG Zhen-tao, ZHANG Fang-liang, GUO Shi-bo, SHI Yan-ying, YANG Xiao-guang
    Chinese Journal of Agrometeorology    2022, 43 (07): 515-526.   DOI: 10.3969/j.issn.1000-6362.2022.07.001
    Abstract266)      PDF(pc) (1251KB)(295)       Save
    The effects of irrigation on winter wheat yield and water use efficiency (WUE) were mostly explored based on site-based experiments in North China Plain (NCP) region. However, due to the influences of contrasting environmental factors (e.g. climate and soil properties), these results cannot be accurately cross-compared among different studies, resulting in the difficulty to get the generalizable pattern at regional scale. Here meta-analysis was conducted to comprehensively evaluate the effects of irrigation on winter wheat yield and WUE in NCP region, with the observation data of 1876 pairs from 186 field experimental papers totally. The differences of the irrigation effects in different regions, precipitation year types, soil texture, and nitrogen (N) application levels were explored, and the corresponding optimal irrigation amounts for reaching high yield and WUE were ascertained. Results showed that compared with non-irrigation during the winter wheat growing period, irrigation increased the yield of winter wheat in NCP by 32.0%-38.3%, and reduced the WUE by 27.1%-30.1%. The yield increment due to irrigation in the northwest of NCP (39.6%-53.5%) with total precipitation during the winter wheat growing period below 150mm was higher than that in the southeast of NCP (24.3%-27.1%) with total precipitation during the winter wheat growing period higher than 150mm, while the decrease of WUE due to irrigation in northwest of NCP (32.4%-37.5%) was higher than that in the southeast of NCP (22.0%-24.3%). The optimum irrigation amount for high yield and WUE of winter wheat was 150-180mm in the northwest and 120-150mm in the southeast. Specifically, for different precipitation year types, the optimum irrigation amounts were 120-150mm with 2 times during jointing and flowering stages for dry year, during jointing and heading stages for normal year, and during jointing and booting stages for wet year. For different soil texture, irrigation under loamy soil had the highest increases in yield, while clay soil had the lowest decreases in WUE; the optimum irrigation amounts of winter wheat with four different soil texture of sandy soil, loam, clay loam and clay were 60-90mm, 120-150mm, 180-210mm, and 150-180mm, respectively. For different N application levels, N application of 120-240kg·ha−1 led to the highest yield and WUE under the irrigation amounts of 80-140mm, of which the higher yield was obtained under irrigation amounts of 110-140mm, and the higher WUE was obtained under the irrigation amounts of 80-110mm. Collectively, the NCP region can achieve the goals of high yield and WUE when irrigation amount was 120-150mm with 2 times but at different stages during different precipitation year types (i.e. dry year, normal year and wet year). Meanwhile, the combination of loam conditions with the N application of 120-240kg·ha−1 can synergistically improve the yield and water use efficiency of winter wheat.
    Related Articles | Metrics | Comments0
    Impact Report of Meteorological Conditions on Agricultural Production in Autumn 2022
    ZHANG Yan-hong, LI Yi-jun, HE Liang, WANG Chun-zhi, LIU Wei, ZHAO Xiao-feng, HOU Ying-yu, GUO An-hong, ZHAO Xiu-lan
    Chinese Journal of Agrometeorology    2023, 44 (01): 82-84.   DOI: 10.3969/j.issn.1000-6362.2023.01.008
    Abstract263)      PDF(pc) (338KB)(96)       Save
    In autumn of 2022, the national average temperature was 10.9℃, which was the highest in the same period since 1961. The national average precipitation was 107.5mm, 8.5% less than the normal value. The national average sunshine duration was 575.2h, close to the same period of the normal years. The sunshine and temperature in most agricultural regions of China were suitable during autumn. The early frost in Northeast China occurred earlier than the normal years but its duration was shorter. There was no cold and dew wind in the late rice region. The meteorological conditions were generally favorable for crops grain-filling, maturing, harvesting, drying and autumn planting. The autumn harvest and sowing were generally progressing smoothly. The agricultural drought in Jiangxi, Hunan, eastern Guizhou and other regions occurred a wide spatial distribution and lasted for a long time, which resulted in difficulties for sowing and emergence of rape seedlings in some areas. So the yield and quality of some field crops and economic forests were also adversely affected.
    Related Articles | Metrics | Comments0